RUS  ENG
Full version
PEOPLE

Kadchenko Sergey Ivanovich

Publications in Math-Net.Ru

  1. Algorithms for the computation of the eigenvalues of discrete semi-bounded operators defined on quantum graphs

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:1 (2023),  16–25
  2. Algorithms invenire asymptotic formulas eigenvalues discreta semi-terminus operators

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:2 (2023),  104–110
  3. Numerical methods for solving spectral problems on quantum graphs

    J. Comp. Eng. Math., 8:3 (2021),  49–70
  4. Algorithm for numerical solution of inverse spectral problems generated by Sturm–Liouville operators of an arbitrary even order

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:2 (2021),  52–63
  5. Calculation of the eigenvalues of the problems generated by the arbitrary even order Sturm – Liouville operators

    J. Comp. Eng. Math., 7:3 (2020),  34–44
  6. Solution of inverse spectral problems for discrete semi-bounded operators given on geometric graphs

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  19–32
  7. Calculation of discrete semi-bounded operators’ eigenvalues with large numbers

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:1 (2019),  10–15
  8. Calculation of spectral characteristics of perturbed self-adjoint operators by methods of regularized traces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 141 (2017),  61–78
  9. Calculation of eigenvalues of discrete semibounded differential operators

    J. Comp. Eng. Math., 4:1 (2017),  38–47
  10. Spectral problems on compact graphs

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:3 (2017),  156–162
  11. Computational experiment for a class of mathematical models of magnetohydrodynamics

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:1 (2017),  149–155
  12. Numerical study of a flow of viscoelastic fluid of Kelvin–Voigt having zero order in a magnetic field

    J. Comp. Eng. Math., 3:2 (2016),  40–47
  13. Calculation of eigenvalues of elliptic differential operators using the theory of regularized series

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:2 (2016),  36–43
  14. Finding of values for sums of functional Rayleigh–Schrodinger series for perturbed self-adjoint operators

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:3 (2016),  137–143
  15. Numerical research of the Barenblatt–Zheltov–Kochina stochastic model

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:2 (2016),  117–123
  16. The calculation of values of eigenfunctions of the perturbed self-adjoint operators by regularized traces method

    J. Comp. Eng. Math., 2:4 (2015),  48–60
  17. Calculation of eigenvalues of Couette spectral problem by method of regularized traces

    J. Comp. Eng. Math., 2:4 (2015),  37–47
  18. A numerical method for inverse spectral problems

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:3 (2015),  116–126
  19. Numerical method for solving inverse spectral problems generated by perturbed self-adjoint operators

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 9/1(110),  5–11
  20. Numerical method for the solution of inverse problems generated by perturbations of self-adjoint operators by method of regularized traces

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 6(107),  23–30
  21. A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:4 (2013),  15–25
  22. The calculating of meanings of eigen functions of discrete semibounded from below operators via method of regularized traces

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2012, no. 6(97),  13–21
  23. The Algorithm of Finding of Meanings of Eigenfunctions of Perturbed Self-Adjoin Operators Via Method of Regularized Traces

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 14,  83–88
  24. The Numerical Methods of Eigenvalues and Eigenfunctions of Perturbed Self-Adjoin Operator Finding

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13,  45–57
  25. Meanings of the First Eigenfunctions of Perturbed Discrete Operator with Simple Spectrum Finding

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 11,  25–32
  26. The first four corrections of the perturbation theory for discrete semi bounded from below operators with free multiplicities of eigenvalues finding

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 9,  16–21
  27. Numeric method of finding the eigenvalues for the discrete lower semibounded operators

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8,  46–51
  28. Computing the sums of Rayleigh–Schrödinger series of perturbed self-adjoint operators

    Zh. Vychisl. Mat. Mat. Fiz., 47:9 (2007),  1494–1505
  29. Computation of eigenvalues of perturbed discrete semibounded operators

    Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006),  1265–1272
  30. Линейные уравнения для вычисления собственных чисел несамосопряженных операторов

    Matem. Mod. Kraev. Zadachi, 3 (2005),  117–120
  31. Новый метод вычисления рядов поправок теории возмущений дискретных операторов

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 9,  67–85
  32. Computation of the first eigenvalues of the hydrodynamic stability problem for a viscous fluid flow between two rotating cylinders

    Differ. Uravn., 36:6 (2000),  742–746
  33. Computation of the first eigenvalues of a boundary value problem on the hydrodynamic stability of a Poiseuille flow in a circular tube

    Differ. Uravn., 34:1 (1998),  50–53
  34. Laminar nonisothermal flows of a ferrofluid in a channel of a rectangular cross-section

    Dokl. Akad. Nauk, 347:2 (1996),  171–174

  35. Yu.I. Sapronov. To the memory of mathematician, teacher and friend

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019),  166–168
  36. To the 65th anniversary of professor G. A. Sviridyuk

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017),  155–158


© Steklov Math. Inst. of RAS, 2024