|
|
Publications in Math-Net.Ru
-
Algorithms for the computation of the eigenvalues of discrete semi-bounded operators defined on quantum graphs
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:1 (2023), 16–25
-
Algorithms invenire asymptotic formulas eigenvalues discreta semi-terminus operators
Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:2 (2023), 104–110
-
Numerical methods for solving spectral problems on quantum graphs
J. Comp. Eng. Math., 8:3 (2021), 49–70
-
Algorithm for numerical solution of inverse spectral problems generated by Sturm–Liouville operators of an arbitrary even order
Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:2 (2021), 52–63
-
Calculation of the eigenvalues of the problems generated by the arbitrary even order Sturm – Liouville operators
J. Comp. Eng. Math., 7:3 (2020), 34–44
-
Solution of inverse spectral problems for discrete semi-bounded operators given on geometric graphs
Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020), 19–32
-
Calculation of discrete semi-bounded operators’ eigenvalues with large numbers
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:1 (2019), 10–15
-
Calculation of spectral characteristics of perturbed self-adjoint operators by methods of regularized traces
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 141 (2017), 61–78
-
Calculation of eigenvalues of discrete semibounded differential operators
J. Comp. Eng. Math., 4:1 (2017), 38–47
-
Spectral problems on compact graphs
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:3 (2017), 156–162
-
Computational experiment for a class of mathematical models of magnetohydrodynamics
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:1 (2017), 149–155
-
Numerical study of a flow of viscoelastic fluid of Kelvin–Voigt having zero order in a magnetic field
J. Comp. Eng. Math., 3:2 (2016), 40–47
-
Calculation of eigenvalues of elliptic differential operators using the theory of regularized series
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:2 (2016), 36–43
-
Finding of values for sums of functional Rayleigh–Schrodinger series for perturbed self-adjoint operators
Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:3 (2016), 137–143
-
Numerical research of the Barenblatt–Zheltov–Kochina stochastic model
Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:2 (2016), 117–123
-
The calculation of values of eigenfunctions of the perturbed self-adjoint operators by regularized traces method
J. Comp. Eng. Math., 2:4 (2015), 48–60
-
Calculation of eigenvalues of Couette spectral problem by method of regularized traces
J. Comp. Eng. Math., 2:4 (2015), 37–47
-
A numerical method for inverse spectral problems
Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:3 (2015), 116–126
-
Numerical method for solving inverse spectral problems generated by perturbed self-adjoint operators
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 9/1(110), 5–11
-
Numerical method for the solution of inverse problems generated by perturbations of self-adjoint operators by method of regularized traces
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 6(107), 23–30
-
A Numerical Method for Solving Inverse Problems Generated by the Perturbed Self-Adjoint Operators
Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:4 (2013), 15–25
-
The calculating of meanings of eigen functions of discrete semibounded from below operators via method of regularized traces
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2012, no. 6(97), 13–21
-
The Algorithm of Finding of Meanings of Eigenfunctions of Perturbed Self-Adjoin Operators Via Method of Regularized Traces
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 14, 83–88
-
The Numerical Methods of Eigenvalues and Eigenfunctions of Perturbed Self-Adjoin Operator Finding
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13, 45–57
-
Meanings of the First Eigenfunctions of Perturbed Discrete Operator with Simple Spectrum Finding
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 11, 25–32
-
The first four corrections of the perturbation theory for discrete semi bounded from below operators with free multiplicities of eigenvalues finding
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 9, 16–21
-
Numeric method of finding the eigenvalues for the discrete lower semibounded operators
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8, 46–51
-
Computing the sums of Rayleigh–Schrödinger series of perturbed self-adjoint operators
Zh. Vychisl. Mat. Mat. Fiz., 47:9 (2007), 1494–1505
-
Computation of eigenvalues of perturbed discrete semibounded operators
Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006), 1265–1272
-
Линейные уравнения для вычисления собственных чисел несамосопряженных операторов
Matem. Mod. Kraev. Zadachi, 3 (2005), 117–120
-
Новый метод вычисления рядов поправок теории
возмущений дискретных операторов
Vestnik Chelyabinsk. Gos. Univ., 2003, no. 9, 67–85
-
Computation of the first eigenvalues of the hydrodynamic stability problem for a viscous fluid flow between two rotating cylinders
Differ. Uravn., 36:6 (2000), 742–746
-
Computation of the first eigenvalues of a boundary value problem on the hydrodynamic stability of a Poiseuille flow in a circular tube
Differ. Uravn., 34:1 (1998), 50–53
-
Laminar nonisothermal flows of a ferrofluid in a channel of a rectangular cross-section
Dokl. Akad. Nauk, 347:2 (1996), 171–174
-
Yu.I. Sapronov. To the memory of mathematician, teacher and friend
Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 166–168
-
To the 65th anniversary of professor G. A. Sviridyuk
Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017), 155–158
© , 2024