RUS  ENG
Full version
PEOPLE

Piterbarg Vladimir Il'ich

Publications in Math-Net.Ru

  1. High excursion probabilities for gaussian fields won smooth manifolds

    Teor. Veroyatnost. i Primenen., 69:2 (2024),  369–392
  2. High level exceeding probability for a Gaussian process with constant variance and variable smoothness

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 4,  21–25
  3. A limit theorem for Gaussian copulas with weak dependence

    Zap. Nauchn. Sem. POMI, 535 (2024),  5–23
  4. Asymptotic behavior of point processes of exits of a Gaussian stationary sequence beyond high levels

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 6,  36–42
  5. On accompanying measures and asymptotic expansions in the B. V. Gnedenko limit theorem

    Teor. Veroyatnost. i Primenen., 67:1 (2022),  57–80
  6. On the maximum of a Gaussian process with unique maximum point of its variance

    Fundam. Prikl. Mat., 23:1 (2020),  161–174
  7. High excursions of Bessel process and other processes of Bessel type

    Dokl. Akad. Nauk, 487:3 (2019),  238–241
  8. High excursions of Gaussian nonstationary processes in discrete time

    Fundam. Prikl. Mat., 22:2 (2018),  159–169
  9. Method of moments for exit probabilities of Gaussian vector processes from a large region

    Teor. Veroyatnost. i Primenen., 63:4 (2018),  669–682
  10. Massive excursions of Gaussian isotropic fields. Method of moments

    Teor. Veroyatnost. i Primenen., 63:2 (2018),  240–259
  11. High extremes of Gaussian chaos processes: a discrete time approximation approach

    Teor. Veroyatnost. i Primenen., 63:1 (2018),  3–28
  12. On the Asymptotic Laplace Method and Its Application to Random Chaos

    Mat. Zametki, 97:6 (2015),  868–883
  13. On shape of trajectories of Gaussian processes having large massive excursions. II

    Teor. Veroyatnost. i Primenen., 60:3 (2015),  613–621
  14. Gaussian copula time series with heavy tails and strong time dependence

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 5,  3–7
  15. On shape of trajectories of Gaussian processes having large massive excursions

    Teor. Veroyatnost. i Primenen., 58:4 (2013),  672–694
  16. Crude asymptotics of the probability of simultaneous high extrema of two Gaussian processes: the dual action functional

    Uspekhi Mat. Nauk, 60:1(361) (2005),  171–172
  17. Limit theorem for high level $a$-upcrossings by $\chi$-process

    Teor. Veroyatnost. i Primenen., 48:4 (2003),  811–818
  18. On large jumps of a Cramer random walk

    Teor. Veroyatnost. i Primenen., 47:4 (2002),  803–814
  19. Multivariate rank correlations: a Gaussian field on a direct product of spheres

    Teor. Veroyatnost. i Primenen., 45:2 (2000),  236–250
  20. Nonstationary Time Series with a Close Alternative Hypothesis: Locally Asymptotic Distribution of the Likelihood Ratio

    Probl. Peredachi Inf., 35:2 (1999),  75–82
  21. Rice method for Gaussian random fields

    Fundam. Prikl. Mat., 2:1 (1996),  187–204
  22. On the distribution of the maximum of a Gaussian field with constant variance on a smooth manifold

    Teor. Veroyatnost. i Primenen., 41:2 (1996),  438–451
  23. The Laplace method for probability measures in Banach spaces

    Uspekhi Mat. Nauk, 50:6(306) (1995),  57–150
  24. Nonstationarity Criterion for a Gaussian Time-Series Autoregressive Model with a Close Alternative

    Probl. Peredachi Inf., 27:4 (1991),  70–75
  25. On large jumps of a random walk

    Teor. Veroyatnost. i Primenen., 36:1 (1991),  54–64
  26. Asymptotic expansions for the probabilities of large runs of nonstationary Gaussian processes

    Mat. Zametki, 35:6 (1984),  909–920
  27. Rate of convergence of maximal deviation distributions for Gaussian processes and empirical density functions. II

    Teor. Veroyatnost. i Primenen., 28:1 (1983),  164–169
  28. Gaussian stochastic processes

    Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern., 19 (1982),  155–199
  29. Rate of convergence of maximal deviation distributions for Gaussian processes and empirical density functions. I

    Teor. Veroyatnost. i Primenen., 27:4 (1982),  707–724
  30. Large deviations of stochastic processes close to the Gaussian ones

    Teor. Veroyatnost. i Primenen., 27:3 (1982),  474–491
  31. A Poisson limit theorem for large excursions of a Gaussian sequence

    Dokl. Akad. Nauk SSSR, 257:1 (1981),  48–50
  32. Asymptotic expansions in the Poisson limit theorem for large excursions of stationary Gaussian sequences

    Mat. Zametki, 29:1 (1981),  131–144
  33. Comparison of distribution functions of maxima of Gaussian processes

    Teor. Veroyatnost. i Primenen., 26:4 (1981),  702–719
  34. The exact asymptotics for the probability of large span of a Gaussian stationary process

    Teor. Veroyatnost. i Primenen., 26:3 (1981),  480–495
  35. Asymptotic expansions for the probability of large excursions of Gaussian processes

    Dokl. Akad. Nauk SSSR, 242:6 (1978),  1248–1251
  36. The central limit theorem for the number of level crossings of a stationary Gaussian process

    Teor. Veroyatnost. i Primenen., 23:1 (1978),  185–189
  37. The strong mixing property of a quantized Gaussian process

    Dokl. Akad. Nauk SSSR, 211:1 (1973),  48–50
  38. Asymptotics of the average number of $A$-points of overshoot of a Gaussian field beyond a high level

    Dokl. Akad. Nauk SSSR, 203:1 (1972),  9–12
  39. Generalized flows with restricted postaetion

    Teor. Veroyatnost. i Primenen., 15:2 (1970),  217–227
  40. The existence of moments for the number of level crossings by a Gaussian stationary process

    Dokl. Akad. Nauk SSSR, 182:1 (1968),  46–48

  41. Errata to the paper in TVP, v. 58, № 4, p. 672–694

    Teor. Veroyatnost. i Primenen., 59:4 (2014),  822
  42. Nikolai Nikolaevich Nekhoroshev (obituary)

    Uspekhi Mat. Nauk, 64:3(387) (2009),  174–178
  43. Information on the seminar of university scientists

    Teor. Veroyatnost. i Primenen., 31:2 (1986),  428
  44. Поправки к статье“ Пуассоновская предельная теорема для больших выбросов гауссовской последовательности” (ДАН, 1981 г., т. 257, № 1)

    Dokl. Akad. Nauk SSSR, 261:3 (1981),  520


© Steklov Math. Inst. of RAS, 2024