|   |  | 
	
	
	
 
	
  
	
	
        
	  
			Publications in Math-Net.Ru
			
				- 
				Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions
 
 Zh. Mat. Fiz. Anal. Geom., 12:3 (2016),  205–278
- 
				Log-integrability of Rademacher Fourier series, with applications to random analytic functions
 
 Algebra i Analiz, 25:3 (2013),  147–184
- 
				Uniformly spread measures and vector fields
 
 Zap. Nauchn. Sem. POMI, 366 (2009),  116–127
- 
				Coarse equidistribution of the argument of entire functions of finite order
 
 Mat. Fiz. Anal. Geom., 11:4 (2004),  492–506
- 
				Asymptotics of Fourier and Laplace transforms in weighted spaces of analytic functions
 
 Algebra i Analiz, 14:4 (2002),  107–140
- 
				The geometric Kannan–Lovász–Simonovits lemma, dimension-free estimates for volumes of sublevel sets of polynomials, and distribution of zeros of random analytic functions
 
 Algebra i Analiz, 14:2 (2002),  214–234
- 
				A question by Alexei Aleksandrov and logarithmic determinants
 
 Mat. Fiz. Anal. Geom., 8:3 (2001),  308–317
- 
				A remark to the definition of Nevanlinna matrices
 
 Mat. Fiz. Anal. Geom., 3:3/4 (1996),  412–422
- 
				A note on the Hall–Mergelyan theme
 
 Mat. Fiz. Anal. Geom., 3:1/2 (1996),  164–168
- 
				Almost periodic Sturm–Liouville operators with a Cantor
   homogeneous spectrum and pseudo-continuable Weyl functions
 
 Dokl. Akad. Nauk, 339:6 (1994),  736–738
- 
				Infinite-gap Jacobi matrices with pseudocontinuable Weyl functions
   and homogeneous spectrum
 
 Dokl. Akad. Nauk, 335:4 (1994),  433–436
- 
				Infinite-dimensional real problem of Jacobi inversion and Hardy
   spaces of character-automorphic functions
 
 Dokl. Akad. Nauk, 335:2 (1994),  161–163
- 
				Functions that deviate least from zero on closed subsets of the real axis
 
 Algebra i Analiz, 4:2 (1992),  1–61
- 
				Meromorphic functions of completely regular growth and their logarithmic derivatives
 
 Sibirsk. Mat. Zh., 33:1 (1992),  44–52
- 
				Distribution of values of meromorphic functions and meromorphic curves from the standpoint of potential theory
 
 Algebra i Analiz, 3:1 (1991),  131–164
- 
				On the distribution of values of meromorphic functions of finite
   order
 
 Dokl. Akad. Nauk SSSR, 316:3 (1991),  538–541
- 
				On a group choice problem
 
 Avtomat. i Telemekh., 1990, no. 9,  101–108
- 
				The second fundamental theorem in value distribution theory of
   meromorphic curves for nonlinear divisors
 
 Dokl. Akad. Nauk SSSR, 311:6 (1990),  1293–1295
- 
				Distribution of the preimages of measures under the action of a meromorphic function
 
 Funktsional. Anal. i Prilozhen., 24:2 (1990),  91–92
- 
				On the distribution of the values of meromorphic functions of finite order with respect to the arguments
 
 Sibirsk. Mat. Zh., 31:2 (1990),  169–179
- 
				Proof of a conditional theorem of Littlewood on the distribution of values of entire functions
 
 Izv. Akad. Nauk SSSR Ser. Mat., 51:2 (1987),  421–428
- 
				A hypothesis of Littlewood and the distribution of values of entire functions
 
 Funktsional. Anal. i Prilozhen., 20:1 (1986),  71–72
- 
				On the addition of lower indicators
 
 Dokl. Akad. Nauk SSSR, 273:1 (1983),  32–33
- 
				The correlation between sets of defect values and deviations for a meromorphic function of finite order
 
 Sibirsk. Mat. Zh., 22:2 (1981),  198–206
						- 
				Boris Yakovlevich Levin
 
 Zh. Mat. Fiz. Anal. Geom., 15:4 (2019),  543–556
- 
				Naum Il'ich Akhiezer
 
 Zh. Mat. Fiz. Anal. Geom., 15:3 (2019),  425–429
- 
				Anatoly Asirovich Goldberg (1930–2008)
 
 Zh. Mat. Fiz. Anal. Geom., 5:1 (2009),  104–106
- 
				Iosif Vladimirovich Ostrovskii (on his 70th birthday)
 
 Uspekhi Mat. Nauk, 60:1(361) (2005),  186–188
- 
				The scientific school of B. Ya. Levin
 
 Mat. Fiz. Anal. Geom., 10:2 (2003),  228–242
- 
				Iosif Vladimirovich Ostrovskii (on his sixtieth birthday)
 
 Uspekhi Mat. Nauk, 50:2(302) (1995),  232–235
- 
				Boris Yakovlevich Levin (obituary)
 
 Uspekhi Mat. Nauk, 49:1(295) (1994),  201–202
 
				
	
	
	
	© , 2025