|
|
Publications in Math-Net.Ru
-
On the structure of Laplacian characteristic polynomial of circulant graphs
Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024), 34–39
-
The generating function is rational for the number of rooted forests in a circulant graph
Mat. Tr., 26:2 (2023), 129–137
-
Cyclic coverings of graphs. Counting rooted spanning forests and trees, Kirchhoff index, and Jacobians
Uspekhi Mat. Nauk, 78:3(471) (2023), 115–164
-
On Jacobian group and complexity of the $Y$-graph
Sib. Èlektron. Mat. Izv., 19:2 (2022), 662–673
-
Plans' periodicity theorem for Jacobian of circulant graphs
Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 51–54
-
Fixed points of cyclic groups acting purely harmonically on a graph
Sib. Èlektron. Mat. Izv., 18:1 (2021), 617–621
-
Kirchhoff index for circulant graphs and its asymptotics
Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020), 43–47
-
On the structure of the critical group of a circulant graph with non-constant jumps
Uspekhi Mat. Nauk, 75:1(451) (2020), 197–198
-
Elementary formulas for Kirchhoff index of Möbius ladder and Prism graphs
Sib. Èlektron. Mat. Izv., 16 (2019), 1654–1661
-
Mirror symmetries of hyperbolic tetrahedral manifolds
Sib. Èlektron. Mat. Izv., 15 (2018), 1850–1856
-
On the asymptotics of volume for non-Euclidean simplices
Uspekhi Mat. Nauk, 72:5(437) (2017), 195–196
-
On the Oikawa and Arakawa theorems for graphs
Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017), 243–252
-
Volumes of hyperbolic hexahedra with $\overline{3}$-symmetry
Sib. Èlektron. Mat. Izv., 13 (2016), 1150–1158
-
An explicit volume formula for the link $7_3^2 (\alpha, \alpha)$ cone-manifolds
Sib. Èlektron. Mat. Izv., 13 (2016), 1017–1025
-
The equivalence classes of holomorphic mappings of genus 3 Riemann surfaces onto genus 2 Riemann surfaces
Sibirsk. Mat. Zh., 57:6 (2016), 1346–1360
-
Recent progress in enumeration of hypermaps
Zap. Nauchn. Sem. POMI, 446 (2016), 139–164
-
On the existence of Euclidean structure on the figure eight knot with a bridge
Yakutian Mathematical Journal, 22:4 (2015), 32–42
-
On the pseudo-volume of a hyperbolic tetrahedron
Yakutian Mathematical Journal, 22:4 (2015), 12–20
-
On the volume of a hyperbolic octahedron with $\overline3$-symmetry
Trudy Mat. Inst. Steklova, 288 (2015), 7–15
-
On the Belyi functions of planar circular maps
Fundam. Prikl. Mat., 18:6 (2013), 111–133
-
On the enumeration of circular maps with given number of edges
Sibirsk. Mat. Zh., 54:4 (2013), 788–806
-
Î ôîðìóëå Áðàõìàãóïòû â ãåîìåòðèè Ëîáà÷åâñêîãî
Mat. Pros., Ser. 3, 16 (2012), 172–180
-
Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane
Sib. Èlektron. Mat. Izv., 9 (2012), 247–255
-
A volume formula for $\mathbb Z_2$-symmetric spherical tetrahedra
Sibirsk. Mat. Zh., 52:3 (2011), 582–599
-
Geometric orbifolds with torsion free derived subgroup
Sibirsk. Mat. Zh., 51:1 (2010), 48–61
-
The Volume of the Lambert Cube in Spherical Space
Mat. Zametki, 86:2 (2009), 190–201
-
Spherical structures on torus knots and links
Sibirsk. Mat. Zh., 50:5 (2009), 1083–1096
-
Discrete Analytical Functions of Several Variables and Taylor Expansion
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009), 38–46
-
Löbell manifolds revised
Sib. Èlektron. Mat. Izv., 4 (2007), 605–609
-
Elementary formulas for a hyperbolic tetrahedron
Sibirsk. Mat. Zh., 47:4 (2006), 831–841
-
Hyperbolic 3-Manifolds with Geodesic Boundary: Enumeration and Volume Calculation
Trudy Mat. Inst. Steklova, 252 (2006), 167–183
-
A formula for the volume of a hyperbolic tetrahedon
Uspekhi Mat. Nauk, 60:2(362) (2005), 159–160
-
On the volume of a symmetric tetrahedron in hyperbolic and spherical spaces
Sibirsk. Mat. Zh., 45:5 (2004), 1022–1031
-
Surgeries on small volume hyperbolic 3-orbifolds
Sibirsk. Mat. Zh., 42:2 (2001), 318–331
-
Spherical Coxeter groups and hyperelliptic 3-manifolds
Mat. Zametki, 66:2 (1999), 173–177
-
Three-dimensional hyperbolic manifolds of small volume with three hyperelliptic involutions
Sibirsk. Mat. Zh., 40:5 (1999), 1035–1051
-
Three-dimensional hyperelliptic manifolds and Hamiltonian graphs
Sibirsk. Mat. Zh., 40:4 (1999), 745–763
-
The Heegaard genus of hyperbolic 3-manifolds of small volume
Sibirsk. Mat. Zh., 37:5 (1996), 1013–1018
-
Fibonacci manifolds as two-fold coverings of the three-dimensional sphere and the Meyerhoff–Neumann conjecture
Sibirsk. Mat. Zh., 37:3 (1996), 534–542
-
Hyperbolic volumes of Fibonacci manifolds
Sibirsk. Mat. Zh., 36:2 (1995), 266–277
-
Limit ordinals in the Thurston–Jorgensen theorem on the volumes of three-dimensional hyperbolic manifolds
Dokl. Akad. Nauk, 336:1 (1994), 7–10
-
Geometric properties of discrete groups acting with fixed points in a Lobachevskii space
Dokl. Akad. Nauk SSSR, 300:1 (1988), 27–30
-
The isometry group of the hyperbolic space of a Seifert–Weber dodecahedron
Sibirsk. Mat. Zh., 28:5 (1987), 134–144
-
The number of nonequivalent coverings over a compact nonorientable surface
Sibirsk. Mat. Zh., 27:1 (1986), 123–131
-
Groups of automorphisms of three-dimensional hyperbolic manifolds
Dokl. Akad. Nauk SSSR, 285:1 (1985), 40–44
-
Nonequivalent coverings of Riemann surfaces with a prescribed ramification type
Sibirsk. Mat. Zh., 25:4 (1984), 120–142
-
On the Hurwitz problem on the number of inequivalent coverings over a compact Riemann surface
Sibirsk. Mat. Zh., 23:3 (1982), 155–160
-
On the solution of the Hurwitz problem on the number of nonequivalent coverings over a compact Riemann surface
Dokl. Akad. Nauk SSSR, 261:3 (1981), 537–542
-
On unramified coverings of compact Riemann surfaces
Dokl. Akad. Nauk SSSR, 244:3 (1979), 529–532
-
Determination of the number of nonequivalent coverings over a compact Riemann surface
Dokl. Akad. Nauk SSSR, 239:2 (1978), 269–271
-
A class of difference equations with polynomial coefficients
Sibirsk. Mat. Zh., 19:6 (1978), 1315–1331
-
On an example of a compact Riemann surface with trivial automorphism group
Dokl. Akad. Nauk SSSR, 237:1 (1977), 32–34
-
On branched coverings of Riemann surfaces with the trivial group of covering transformations
Dokl. Akad. Nauk SSSR, 235:6 (1977), 1267–1269
-
On semidirect products of discontinuous transformation groups
Dokl. Akad. Nauk SSSR, 225:5 (1975), 1016–1017
-
Viktor Vasil’evich Chueshev is 70
Sib. Èlektron. Mat. Izv., 14 (2017), 69–79
-
Vladislav Vasil'evich Aseev is 70
Sib. Èlektron. Mat. Izv., 14 (2017), 43–57
-
On Graphs and Groups, Spectra and Symmetries held on August 15–28, 2016, Novosibirsk, Russia
Sib. Èlektron. Mat. Izv., 13 (2016), 1369–1382
-
Workshop on geometry and topology of three-dimensional manifolds
Sib. Èlektron. Mat. Izv., 3 (2006), 1–3
© , 2024