RUS  ENG
Full version
PEOPLE
Trifonov Andrei Yurievich
Professor
Doctor of physico-mathematical sciences (1995)

Speciality: 01.04.02 (Theoretical physics)
Birth date: 14.07.1963
E-mail: ,
Keywords: Asymptotic methods, nonlinear equations, semiclassical asymptotic, financial mathematics.
UDC: 517, 517.9

Subject:

1. Asymptotic methods for the solution of linear and nonlinear equations of mathematical physics.
2. Semiclassical quantization of nonintegrable Hamiltonian systems.
3. Asymptotic methods for financial mathematics.
4. Reaction-diffusion equations.


Main publications:
  1. Lisok A.L., Shapovalov A.V. and Trifonov A.Yu., “Symmetry and Intertwining Operators for the Nonlocal Gross–Pitaevskii Equation”, Sym., Integ. and Geom.: Meth. and Appl., 9 (2013), 066, 1–21
  2. Belov V.V., Litvinets F.N. and Trifonov A Yu., “The semiclassical spectral series for a Hartree-type equation corresponding to a rest point of the Hamilton–Ehrenfest system”, Theor. Math. Phys., 150:1 (2007), 26–40
  3. Belov V.V., Trifonov A.Yu. and Shapovalov A.V., “The trajectory-coherent approximation and the system of moments for the Hartree type equation”, Int. J. of Math. and Math. Scien., 32:6 (2002), 325–370
  4. Bagrov V.G., Belov V.V., Trifonov A.Yu., “Semiclassical trajectory-coherent approximation in quantum mechanics: I. High order corrections to multidimensional time-dependent equations of Schrodinger type”, Ann. of Phys. (N.Y.), 246:2 (1996), 231–290
  5. Bagrov V.G., Belov V.V., Yevseyevich A.A., Trifonov A.Yu., “Quasiclassical spectral series of the Dirac operators corresponding to quantized two-dimensional Lagrangian tori”, J. Phys. A: Math. Gen., 27:15 (1994), 5273–5306

Publications in Math-Net.Ru

Personal pages:

Organisations:


© Steklov Math. Inst. of RAS, 2024