RUS  ENG
Full version
PEOPLE

Belov Vladimir Vladimirovich

Publications in Math-Net.Ru

  1. Semiclassical quantization of Bohr orbits in the helium atom

    TMF, 151:2 (2007),  261–286
  2. Semiclassical spectral series of a Hartree-type operator corresponding to a rest point of the classical Hamilton–Ehrenfest system

    TMF, 150:1 (2007),  26–40
  3. Localized Asymptotic Solutions of the Self-Consistent Field Equation

    Mat. Zametki, 80:2 (2006),  309–312
  4. A generalized adiabatic principle for electron dynamics in curved nanostructures

    UFN, 175:9 (2005),  1004–1010
  5. Asymptotic Solutions of Nonrelativistic Equations of Quantum Mechanics in Curved Nanotubes: I. Reduction to Spatially One-Dimensional Equations

    TMF, 141:2 (2004),  267–303
  6. Asymptotic solutions of the Schrödinger equation in thin tubes

    Trudy Inst. Mat. i Mekh. UrO RAN, 9:1 (2003),  15–25
  7. Explicit Formulas for Generalized Action–Angle Variables in a Neighborhood of an Isotropic Torus and Their Application

    TMF, 135:3 (2003),  378–408
  8. Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations

    TMF, 130:3 (2002),  460–492
  9. Isotropic Tori, Complex Germ and Maslov Index, Normal Forms and Quasimodes of Multidimensional Spectral Problems

    Mat. Zametki, 69:4 (2001),  483–514
  10. Semiclassical Spectral Series of a Helium-like Atom in a Magnetic Field

    TMF, 126:3 (2001),  455–474
  11. Quasimodes of the two-dimensional quartic oscillator

    Mat. Zametki, 64:2 (1998),  297–301
  12. Some thermodynamic features of ideal systems with nonlinear interaction

    TMF, 116:3 (1998),  431–441
  13. The Hamiltonian structure of equations for quantum averages in systems with matrix Hamiltonians

    Mat. Zametki, 58:6 (1995),  803–817
  14. Hamiltonian systems of equations for quantum means

    Mat. Zametki, 56:6 (1994),  27–39
  15. The semiclassical approximation in quantum mechanics. A new approach

    TMF, 98:1 (1994),  48–55
  16. Some quasiclassical spectral series in a quantum anisotropic Kepler problem

    Dokl. Akad. Nauk, 331:2 (1993),  150–154
  17. Semiclassical asymptotics of a model problem

    Mat. Zametki, 53:5 (1993),  14–20
  18. Semiclassical maslov asymptotics with complex phases. I. General approach

    TMF, 92:2 (1992),  215–254
  19. “Classical” equations of motion in quantum mechanics with gauge fields

    TMF, 92:1 (1992),  41–61
  20. Semiclassically concentrated quantum states

    TMF, 90:1 (1992),  84–94
  21. Quasiclassical trajectory-coherent states in quantum mechanics with gauge fields

    Dokl. Akad. Nauk SSSR, 311:4 (1990),  849–854
  22. The method of quasiclassical trajectory-coherent states in the theory of spontaneous electron radiation

    Dokl. Akad. Nauk SSSR, 308:1 (1989),  88–91
  23. Quasiclassical path-coherent states of the Dirac operator with Pauli's anomalous interaction

    Dokl. Akad. Nauk SSSR, 305:3 (1989),  574–580
  24. The Maslov canonical operator on isotropic manifolds with a complex germ, and its applications to spectral problems

    Dokl. Akad. Nauk SSSR, 298:5 (1988),  1037–1042
  25. Time of loss of a specified accuracy of semiclassical trajectory-coherent states

    TMF, 74:2 (1988),  316–319
  26. Semiclassical method of calculating the characteristics of the spontaneous radiation of a charge moving in periodic structures

    TMF, 70:3 (1987),  469–476
  27. Extreme distortion of the image of objects observed through a scattering layer

    Dokl. Akad. Nauk SSSR, 268:2 (1983),  321–324
  28. On the noninvariance of observing systems in the vision theory

    Dokl. Akad. Nauk SSSR, 266:6 (1982),  1353–1356
  29. Quasiclassical trajectory-coherent states of a nonrelativistic particle in an arbitrary electromagnetic field

    TMF, 50:3 (1982),  390–396
  30. A generalized “wave” method for solving extremal problems on graphs

    Zh. Vychisl. Mat. Mat. Fiz., 19:3 (1979),  739–755
  31. Quasiclassical energy levels of a diatomic molecule in a magnetic field

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 6,  9–13


© Steklov Math. Inst. of RAS, 2025