RUS  ENG
Full version
PEOPLE

Shabrov Sergey Aleksandrovich

Publications in Math-Net.Ru

  1. A model of deformations of a rod – console with a displacement limiter

    Applied Mathematics & Physics, 56:1 (2024),  35–49
  2. On solvability of a boundary value problem in a strip for a degenerate high-order elliptic equation

    Applied Mathematics & Physics, 54:1 (2022),  5–14
  3. On the rate of growth of eigenvalues of a fourth-order spectral problem with derivatives with respect to measure

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 193 (2021),  158–162
  4. On a boundary-value problem with discontinuous solutions and strong nonlinearity

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 193 (2021),  153–157
  5. A priori estimation of solutions of a boundary problem for a pseudodifferential equation with degeneration

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 5,  6–10
  6. Stieltjes differential in impulse nonlinear problems

    Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020),  9–12
  7. On necessary conditions for a minimum of a quadratic functional with a Stieltjes integral and zero coefficient of the highest derivative on the part of the interval

    Izv. Saratov Univ. Math. Mech. Inform., 13:2(1) (2013),  3–8
  8. On a necessary condition of at least one quadratic functional with an integral Stieltjes

    Izv. Saratov Univ. Math. Mech. Inform., 12:1 (2012),  52–55
  9. On the number of solutions of nonlinearity boundary value problems with a Stieltjes integral

    Izv. Saratov Univ. Math. Mech. Inform., 11:4 (2011),  13–17
  10. Sturm–Liouville oscillation theory for impulsive problems

    Uspekhi Mat. Nauk, 63:1(379) (2008),  111–154
  11. About solvability of integro-differential equation with extended Stieltjes integral

    Izv. Saratov Univ. Math. Mech. Inform., 7:2 (2007),  36–39
  12. An Irregular Extension of the Oscillation Theory of the Sturm–Liouville Spectral Problem

    Mat. Zametki, 82:4 (2007),  578–582
  13. Some questions of the qualitative theory of nonsmooth Sturm-Liouville problems

    Tr. Semim. im. I. G. Petrovskogo, 26 (2007),  255–274

  14. Voronezh Winter Mathematical School “Modern Methods in Theory of Functions and Adjacent Problems”

    Uspekhi Mat. Nauk, 60:3(363) (2005),  185–186


© Steklov Math. Inst. of RAS, 2024