RUS  ENG
Full version
PEOPLE

Bikchentaev Airat Midkhatovich

Publications in Math-Net.Ru

  1. The trace and integrable commutators of the measurable operators affiliated to a semifinite von Neumann algebra

    Sibirsk. Mat. Zh., 65:3 (2024),  455–468
  2. Continuity of Operator Functions in the Topology of Local Convergence in Measure

    Trudy Mat. Inst. Steklova, 324 (2024),  51–59
  3. On Extreme Points of Sets in Operator Spaces and State Spaces

    Trudy Mat. Inst. Steklova, 324 (2024),  10–23
  4. A block projection operator in the algebra of measurable operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 10,  77–82
  5. The topologies of local convergence in measure on the algebras of measurable operators

    Sibirsk. Mat. Zh., 64:1 (2023),  17–27
  6. Invertibility of the Operators on Hilbert Spaces and Ideals in $C^*$-Algebras

    Mat. Zametki, 112:3 (2022),  350–359
  7. Essentially invertible measurable operators affiliated to a semifinite von Neumann algebra and commutators

    Sibirsk. Mat. Zh., 63:2 (2022),  272–282
  8. Differences and commutators of idempotents in $C^*$-algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 8,  16–26
  9. Convergence in measure and $\tau$-compactness of $\tau$-measurable operators, affiliated with a semifinite von Neumann algebra

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 5,  89–93
  10. Seminorms Associated with Subadditive Weights on $C^*$-Algebras

    Mat. Zametki, 107:3 (2020),  341–350
  11. Inequalities for determinants and characterization of the trace

    Sibirsk. Mat. Zh., 61:2 (2020),  314–321
  12. Ideal $F$-norms on $C^*$-algebras. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 3,  90–96
  13. Trace and Differences of Idempotents in $C^*$-Algebras

    Mat. Zametki, 105:5 (2019),  647–655
  14. Metrics on projections of the von neumann algebra associated with tracial functionals

    Sibirsk. Mat. Zh., 60:6 (2019),  1223–1228
  15. Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra

    Ufimsk. Mat. Zh., 11:3 (2019),  3–9
  16. Trace and Commutators of Measurable Operators Affiliated to a von Neumann Algebra

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 151 (2018),  10–20
  17. Paranormal elements in normed algebra

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 5,  13–19
  18. Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra

    Sibirsk. Mat. Zh., 59:2 (2018),  309–320
  19. Differences of idempotents in $C^*$-algebras and the quantum Hall effect

    TMF, 195:1 (2018),  75–80
  20. On an analog of the M. G. Krein theorem for measurable operators

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:2 (2018),  243–249
  21. On the $\tau$-compactness of products of $\tau$-measurable operators adjoint to semi-finite von Neumann algebras

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 140 (2017),  78–87
  22. Two classes of $\tau$-measurable operators affiliated with a von Neumann algebra

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 1,  86–91
  23. Differences of idempotents in $C^*$-algebras

    Sibirsk. Mat. Zh., 58:2 (2017),  243–250
  24. On operator monotone and operator convex functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 5,  70–74
  25. On Idempotent $\tau$-Measurable Operators Affiliated to a von Neumann Algebra

    Mat. Zametki, 100:4 (2016),  492–503
  26. Inequality for a Trace on a Unital $C^*$-Algebra

    Mat. Zametki, 99:4 (2016),  483–488
  27. Convergence of integrable operators affiliated to a finite von Neumann algebra

    Trudy Mat. Inst. Steklova, 293 (2016),  73–82
  28. Ideal $F$-norms on $C^*$-algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 5,  69–74
  29. Concerning the Theory of $\tau$-Measurable Operators Affiliated to a Semifinite von Neumann Algebra

    Mat. Zametki, 98:3 (2015),  337–348
  30. On Normal $\tau$-Measurable Operators Affiliated with Semifinite Von Neumann Algebras

    Mat. Zametki, 96:3 (2014),  350–360
  31. On additivity of mappings on measurable functions

    Sibirsk. Mat. Zh., 55:1 (2014),  11–16
  32. The Haagerup problem on subadditive weights on $W^*$-algebras. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 12,  72–76
  33. Block projection operators in normed solid spaces of measurable operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 2,  86–91
  34. Dominated convergence in measure on semifinite von Neumann algebras and arithmetic averages of measurable operators

    Sibirsk. Mat. Zh., 53:2 (2012),  258–270
  35. The Haagerup problem on subadditive weights on $W^*$-algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 10,  94–98
  36. Commutation of Projections and Trace Characterization on von Neumann Algebras. II

    Mat. Zametki, 89:4 (2011),  483–494
  37. On a Lemma of Berezin

    Mat. Zametki, 87:5 (2010),  787–791
  38. Commutativity of projections and characterization of traces on von Neumann algebras

    Sibirsk. Mat. Zh., 51:6 (2010),  1228–1236
  39. Commutativity of projectors and trace characterization on von Neumann algebras. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 12,  80–83
  40. On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections. III. Commutators in $C^*$-algebras

    Mat. Sb., 199:4 (2008),  3–20
  41. Local Convergence in Measure on Semifinite von Neumann Algebras, II

    Mat. Zametki, 82:5 (2007),  783–786
  42. Projection-Convex Combinations in $C^*$-Algebras and the Invariant Subspace Problem, I

    Mat. Zametki, 79:2 (2006),  311–315
  43. Local Convergence in Measure on Semifinite von Neumann Algebras

    Trudy Mat. Inst. Steklova, 255 (2006),  41–54
  44. On representation of elements of a Von Neumann algebra in the form of finite sums of products of projections

    Sibirsk. Mat. Zh., 46:1 (2005),  32–45
  45. The continuity of multiplication for two topologies associated with a Semifinite trace on von Neumann algebra

    Lobachevskii J. Math., 14 (2004),  17–24
  46. Projective Convex Combinations in $C^*$-Algebras with the Unitary Factorization Property

    Mat. Zametki, 76:4 (2004),  625–628
  47. Minimality of Convergence in Measure Topologies on Finite von Neumann Algebras

    Mat. Zametki, 75:3 (2004),  342–349
  48. On a property of $L_p$ spaces on semifinite von Neumann algebras

    Mat. Zametki, 64:2 (1998),  185–190
  49. The triangle inequality for some spaces of measurable operators

    Konstr. Teor. Funkts. Funkts. Anal., 8 (1992),  23–32
  50. A connection between random and fuzzy metrics. II

    Konstr. Teor. Funkts. Funkts. Anal., 6 (1987),  58–61
  51. A connection between random and fuzzy metrics

    Konstr. Teor. Funkts. Funkts. Anal., 5 (1985),  3–15

  52. Leonid Aleksandrovich Aksent'ev

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3,  98–100
  53. Farit Gabidinovich Avkhadiev (on his 70th birthday)

    Uspekhi Mat. Nauk, 73:1(439) (2018),  187–190
  54. Anatolij Nikolaevich Sherstnev (on 80th birthday anniversary)

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:3 (2018),  590–598


© Steklov Math. Inst. of RAS, 2024