|
|
Publications in Math-Net.Ru
-
An analogue of Mahler's transference theorem for multiplicative Diophantine approximation
Dokl. RAN. Math. Inf. Proc. Upr., 510 (2023), 18–22
-
On the transference principle and Nesterenko's linear independence criterion
Izv. RAN. Ser. Mat., 87:2 (2023), 56–68
-
Geometry of Diophantine exponents
Uspekhi Mat. Nauk, 78:2(470) (2023), 71–148
-
Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients
Mat. Sb., 214:3 (2023), 71–84
-
Symmetries of a two-dimensional continued fraction
Izv. RAN. Ser. Mat., 85:4 (2021), 53–68
-
Linear forms of a given Diophantine type and lattice exponents
Izv. RAN. Ser. Mat., 84:1 (2020), 5–26
-
Diophantine exponents of lattices
Sovrem. Probl. Mat., 23 (2016), 35–42
-
A strengthening of Mahler's transference theorem
Izv. RAN. Ser. Mat., 79:1 (2015), 63–76
-
Badly approximable matrices and Diophantine exponents
Chebyshevskii Sb., 14:4 (2013), 38–79
-
Transference inequalities for multiplicative Diophantine exponents
Trudy Mat. Inst. Steklova, 275 (2011), 227–239
-
Application of Spectral Theory to Constructing a Puzzle on the Basis of the Minesweeper Computer Game
Mat. Zametki, 88:6 (2010), 935–937
-
Proof of the Faugère Criterion for the F5 Algorithm
Mat. Zametki, 88:4 (2010), 502–510
-
On a multidimensional generalization of Lagrange's theorem on continued fractions
Izv. RAN. Ser. Mat., 72:1 (2008), 51–66
-
Klein polyhedra and relative minima of lattices
Mat. Zametki, 79:4 (2006), 546–552
-
Sails and norm minima of lattices
Mat. Sb., 196:3 (2005), 31–60
-
Asymptotic Directions for Best Approximations of $n$-Dimensional Linear Forms
Mat. Zametki, 75:1 (2004), 55–70
-
Sails and Hilbert Bases
Trudy Mat. Inst. Steklova, 239 (2002), 98–105
-
Alexander Ivanovich Galochkin (on the 80-th anniversary of his birth)
Chebyshevskii Sb., 25:2 (2024), 20–28
© , 2024