RUS  ENG
Full version
PEOPLE

Avsyankin Oleg Gennadievich

Publications in Math-Net.Ru

  1. On the compactness of integral operators with homogeneous kernels and variable coefficients on the Heisenberg group

    Mat. Zametki, 118:1 (2025),  143–148
  2. On the compactness of integral operators with homogeneous kernels in local Morrey spaces

    Mat. Zametki, 116:3 (2024),  327–338
  3. Projection method for a class of integral operators with bihomogeneous kernels

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 3,  3–11
  4. On Integral Operators with Homogeneous Kernels in Weighted Lebesgue Spaces on the Heisenberg Group

    Mat. Zametki, 114:1 (2023),  144–148
  5. On the algebra generated by Volterra integral operators with homogeneous kernels and continuous coefficients

    Vladikavkaz. Mat. Zh., 24:4 (2022),  19–29
  6. On integral operators with homogeneous kernels in Morrey spaces

    Eurasian Math. J., 12:1 (2021),  92–96
  7. On integral operators with homogeneous kernels and trigonometric coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 4,  3–10
  8. Integral operators with periodic kernels in spaces of integrable functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 2,  3–9
  9. Invertibility of Multidimensional Integral Operators with Bihomogeneous Kernels

    Mat. Zametki, 108:2 (2020),  291–295
  10. On invertibility of convolution type operators in Morrey spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 6,  3–10
  11. Compactness of Some Operators of Convolution Type in Generalized Morrey Spaces

    Mat. Zametki, 104:3 (2018),  336–344
  12. Paired integral operators with homogeneous kernels perturbated by operators of multiplicative shift

    Vladikavkaz. Mat. Zh., 20:1 (2018),  10–20
  13. Volterra type integral operators with homogeneous kernels in weighted $L_p$-spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 11,  3–12
  14. On the Compactness of Convolution-Type Operators in Morrey Spaces

    Mat. Zametki, 102:4 (2017),  483–489
  15. $C^*$-Algebra of Integral Operators with Homogeneous Kernels and Oscillating Coefficients

    Mat. Zametki, 99:3 (2016),  323–332
  16. Paired integral operators with homogeneous-difference kernels

    Vladikavkaz. Mat. Zh., 18:2 (2016),  3–11
  17. Projection method for integral operators with homogeneous kernels perturbed by one-sided multiplicative shifts

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 2,  10–17
  18. On an Algebra of Multidimensional Integral Operators with Homogeneous-Difference Kernels

    Mat. Zametki, 95:2 (2014),  163–169
  19. On the $C^*$-algebra generated by multiplicative discrete convolution operators with oscillating coefficients

    Sibirsk. Mat. Zh., 55:6 (2014),  1199–1207
  20. On boundedness and compactness of multidimensional integral operators with homogeneous kernels

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 11,  64–68
  21. On multidimensional integral operators with homogeneous kernels perturbated by one-sided multiplicative shift operators

    Vladikavkaz. Mat. Zh., 15:1 (2013),  5–13
  22. An algebra generated by multiplicative discrete convolution operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 1,  3–9
  23. The spectra and singular values of multidimensional integral operators with bihomogeneous kernels

    Sibirsk. Mat. Zh., 49:3 (2008),  490–496
  24. Multidimensional integral operators with kernels of mixed homogeneity

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 8,  66–69
  25. On the Algebra of Multidimensional Integral Operators with Homogeneous $SO(n)$-Invariant Kernels and Weakly Radially Oscillating Coefficients

    Mat. Zametki, 82:2 (2007),  163–176
  26. On the Noethericity of multidimensional integral operators with homogeneous and quasi-homogeneous kernels

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 11,  3–10
  27. Multidimensional integral operators with bihomogeneous kernels: A projection method and pseudospectra

    Sibirsk. Mat. Zh., 47:3 (2006),  501–513
  28. The projection method for matrix multidimensional dual integral operators with homogeneous kernels

    Vladikavkaz. Mat. Zh., 8:1 (2006),  3–10
  29. On the index of multidimensional integral operators with bihomogeneous kernels and variable coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 3,  3–12
  30. Projection Method in the Theory of Integral Operators with Homogeneous Kernels

    Mat. Zametki, 75:2 (2004),  163–172
  31. On the Algebra of Pair Integral Operators with Homogeneous Kernels

    Mat. Zametki, 73:4 (2003),  483–493
  32. On the pseudospectra of multidimensional integral operators with homogeneous kernels of degree $-n$

    Sibirsk. Mat. Zh., 44:6 (2003),  1199–1216
  33. On an application of the projection method to paired integral operators with homogeneous kernels

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 8,  3–7
  34. On the algebra of multidimensional integral operators with homogeneous kernels with variable coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 1,  3–10

  35. Valerii Vladimirovich Volchkov (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 80:2(482) (2025),  184–189
  36. Salaudin Musaevich Umarkhadzhiev (on the occasion of his 70th birthday)

    Vladikavkaz. Mat. Zh., 25:1 (2023),  141–142
  37. Alexey Nikolaevich Karapetyants (on the occasion of his 50th birthday)

    Vladikavkaz. Mat. Zh., 23:4 (2021),  131–132
  38. Stefan Grigorievich Samko (on the occasion of his 80th birthday)

    Vladikavkaz. Mat. Zh., 23:3 (2021),  126–129
  39. Stefan Grigog'evich Samko (on his seventieth birthday)

    Vladikavkaz. Mat. Zh., 13:2 (2011),  67–68


© Steklov Math. Inst. of RAS, 2025