RUS  ENG
Full version
PEOPLE

Timofeeva Nadezda Vladimirovna

Publications in Math-Net.Ru

  1. Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles

    TMF, 212:1 (2022),  109–128
  2. Locally Free Resolution of Coherent Sheaves in Arbitrary Dimension

    Mat. Zametki, 110:4 (2021),  635–640
  3. Admissible pairs vs Gieseker-Maruyama

    Mat. Sb., 210:5 (2019),  109–134
  4. Fibred product of commutative algebras: generators and relations

    Model. Anal. Inform. Sist., 23:5 (2016),  620–634
  5. Isomorphism of compactifications of vector bundles moduli: nonreduced moduli

    Model. Anal. Inform. Sist., 22:5 (2015),  629–647
  6. On a morphism of compactifications of moduli scheme of vector bundles

    Sib. Èlektron. Mat. Izv., 12 (2015),  577–591
  7. Infinitesimal criterion for flatness of projective morphism of schemes

    Algebra i Analiz, 26:1 (2014),  185–195
  8. On a new compactification of moduli of vector bundles on a surface. V: Existence of a universal family

    Mat. Sb., 204:3 (2013),  107–134
  9. On a new compactification of moduli of vector bundles on a surface. IV: Nonreduced moduli

    Mat. Sb., 204:1 (2013),  139–160
  10. On an isomorphism of compactifications of moduli scheme of vector bundles

    Model. Anal. Inform. Sist., 19:1 (2012),  37–50
  11. On Degeneration of the Surface in the Fitting Compactification of Moduli of Stable Vector Bundles

    Mat. Zametki, 90:1 (2011),  143–150
  12. On a new compactification of moduli of vector bundles on a surface. III: Functorial approach

    Mat. Sb., 202:3 (2011),  107–160
  13. On the new compactification of moduli of vector bundles on a surface. II

    Mat. Sb., 200:3 (2009),  95–118
  14. On a new compactification of the moduli of vector bundles on a surface

    Mat. Sb., 199:7 (2008),  103–122
  15. A Compactification of the Moduli Variety of Stable Vector 2-Bundles on a Surface in the Hilbert Scheme

    Mat. Zametki, 82:5 (2007),  756–769
  16. Varieties of Complete Pairs of Zero-Dimensional Subschemes of Lengths $\ge2$ and $\ge4$ in Algebraic Surfaces

    Mat. Zametki, 73:5 (2003),  743–752
  17. The variety of complete pairs of zero-dimensional subschemes of length 2 of a smooth three-dimensional variety is singular

    Mat. Sb., 194:3 (2003),  53–60
  18. Determinantal Resolution of the Universal Subscheme in $\mathscr S\times H_{d+1}$

    Mat. Zametki, 69:2 (2001),  286–294
  19. Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length 2 and 3 of algebraic surfaces

    Mat. Zametki, 67:2 (2000),  276–287
  20. The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths 1 and 3 of projective space

    Mat. Sb., 191:11 (2000),  105–116


© Steklov Math. Inst. of RAS, 2024