|
|
Publications in Math-Net.Ru
-
Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles
TMF, 212:1 (2022), 109–128
-
Locally Free Resolution of Coherent Sheaves in Arbitrary Dimension
Mat. Zametki, 110:4 (2021), 635–640
-
Admissible pairs vs Gieseker-Maruyama
Mat. Sb., 210:5 (2019), 109–134
-
Fibred product of commutative algebras: generators and relations
Model. Anal. Inform. Sist., 23:5 (2016), 620–634
-
Isomorphism of compactifications of vector bundles moduli: nonreduced moduli
Model. Anal. Inform. Sist., 22:5 (2015), 629–647
-
On a morphism of compactifications of moduli scheme of vector bundles
Sib. Èlektron. Mat. Izv., 12 (2015), 577–591
-
Infinitesimal criterion for flatness of projective morphism of schemes
Algebra i Analiz, 26:1 (2014), 185–195
-
On a new compactification of moduli of vector bundles on a surface. V: Existence of a universal family
Mat. Sb., 204:3 (2013), 107–134
-
On a new compactification of moduli of vector bundles on a surface. IV: Nonreduced moduli
Mat. Sb., 204:1 (2013), 139–160
-
On an isomorphism of compactifications of moduli scheme of vector bundles
Model. Anal. Inform. Sist., 19:1 (2012), 37–50
-
On Degeneration of the Surface in the Fitting Compactification of Moduli of Stable Vector Bundles
Mat. Zametki, 90:1 (2011), 143–150
-
On a new compactification of moduli of vector bundles on a surface.
III: Functorial approach
Mat. Sb., 202:3 (2011), 107–160
-
On the new compactification of moduli of vector bundles on a surface. II
Mat. Sb., 200:3 (2009), 95–118
-
On a new compactification of the moduli of vector bundles on a surface
Mat. Sb., 199:7 (2008), 103–122
-
A Compactification of the Moduli Variety of Stable Vector 2-Bundles on a Surface in the Hilbert Scheme
Mat. Zametki, 82:5 (2007), 756–769
-
Varieties of Complete Pairs of Zero-Dimensional Subschemes of Lengths $\ge2$ and $\ge4$ in Algebraic Surfaces
Mat. Zametki, 73:5 (2003), 743–752
-
The variety of complete pairs of zero-dimensional subschemes of length 2 of a smooth three-dimensional variety is singular
Mat. Sb., 194:3 (2003), 53–60
-
Determinantal Resolution of the Universal Subscheme in $\mathscr S\times H_{d+1}$
Mat. Zametki, 69:2 (2001), 286–294
-
Smoothness and Euler characteristic of the variety of complete pairs $X_{23}$ of zero-dimensional subschemes of length 2 and 3 of algebraic surfaces
Mat. Zametki, 67:2 (2000), 276–287
-
The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths 1 and 3 of projective space
Mat. Sb., 191:11 (2000), 105–116
© , 2024