|
|
Publications in Math-Net.Ru
-
Orthorecursive expansions generated by the Szegö kernel
Izv. Saratov Univ. Math. Mech. Inform., 23:4 (2023), 443–455
-
On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions
Trudy Mat. Inst. Steklova, 319 (2022), 20–28
-
Representation of functions in symmetric spaces by dilations and translations
Funktsional. Anal. i Prilozhen., 54:1 (2020), 58–62
-
On existence of frames based on the Szegö kernel in the Hardy space
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 2, 57–68
-
Basis properties of affine Walsh systems in symmetric spaces
Izv. RAN. Ser. Mat., 82:3 (2018), 3–30
-
Rademacher Chaoses in Problems of Constructing Spline Affine Systems
Mat. Zametki, 103:6 (2018), 863–874
-
Affine Walsh-type systems of functions in symmetric spaces
Mat. Sb., 209:4 (2018), 3–25
-
Affine system of Walsh type. Completeness and minimality
Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016), 247–256
-
Solution of Cauchy problem for equation first order via Haar functions
Izv. Saratov Univ. Math. Mech. Inform., 16:2 (2016), 151–159
-
Affine Riesz bases and the dual function
Mat. Sb., 207:9 (2016), 111–143
-
Affine Systems of Walsh Type. Orthogonalization and Completion
Izv. Saratov Univ. Math. Mech. Inform., 14:4(1) (2014), 395–400
-
Affine Quantum Frames and Their Spectrum
Izv. Saratov Univ. Math. Mech. Inform., 13:1(1) (2013), 32–36
-
On Bessel Systems in a Banach Space
Mat. Zametki, 91:2 (2012), 285–296
-
Best approximation of functions in $L_p$ by polynomials on affine system
Mat. Sb., 202:2 (2011), 131–158
-
Frames in Banach Spaces
Funktsional. Anal. i Prilozhen., 44:3 (2010), 50–62
-
Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$
Izv. RAN. Ser. Mat., 74:5 (2010), 115–144
-
Affine synthesis in the space $L^2(\mathbb R^d)$
Izv. RAN. Ser. Mat., 73:1 (2009), 177–186
-
Projection description of bessel sequences
Izv. Saratov Univ. Math. Mech. Inform., 9:1 (2009), 44–51
-
Banach frames in the affine synthesis problem
Mat. Sb., 200:9 (2009), 127–146
-
On the components of summable functions represented by elements of families of wavelet functions
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 2, 53–59
-
Convergence of Biorthogonal Series in the System of Contractions and Translations of Functions in the Spaces
$L^p[0,1]$
Mat. Zametki, 83:5 (2008), 722–740
-
Basis conditions for systems of translates and dilates of functions in $L_p$-spaces
Izv. Saratov Univ. Math. Mech. Inform., 7:1 (2007), 39–44
-
Multishifts in Hilbert Spaces
Funktsional. Anal. i Prilozhen., 39:1 (2005), 69–81
-
Representation Systems and Projections of Bases
Mat. Zametki, 75:6 (2004), 944–947
-
On Perturbations of the Haar System
Mat. Zametki, 75:3 (2004), 466–469
-
Riesz Bases Generated by Contractions and Translations of a Function on an Interval
Mat. Zametki, 72:4 (2002), 547–560
-
Inequalities for the components of summable functions and their representations by elements of a system of contractions and shifts
Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 8, 74–81
-
Trigonometrical algebras
Zap. Nauchn. Sem. POMI, 236 (1997), 183–191
© , 2024