RUS  ENG
Full version
PEOPLE

Terekhin Pavel Aleksandrovich

Publications in Math-Net.Ru

  1. Orthorecursive expansions generated by the Szegö kernel

    Izv. Saratov Univ. Math. Mech. Inform., 23:4 (2023),  443–455
  2. On Quasibases and Bases of Symmetric Spaces Consisting of Nonnegative Functions

    Trudy Mat. Inst. Steklova, 319 (2022),  20–28
  3. Representation of functions in symmetric spaces by dilations and translations

    Funktsional. Anal. i Prilozhen., 54:1 (2020),  58–62
  4. On existence of frames based on the Szegö kernel in the Hardy space

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 2,  57–68
  5. Basis properties of affine Walsh systems in symmetric spaces

    Izv. RAN. Ser. Mat., 82:3 (2018),  3–30
  6. Rademacher Chaoses in Problems of Constructing Spline Affine Systems

    Mat. Zametki, 103:6 (2018),  863–874
  7. Affine Walsh-type systems of functions in symmetric spaces

    Mat. Sb., 209:4 (2018),  3–25
  8. Affine system of Walsh type. Completeness and minimality

    Izv. Saratov Univ. Math. Mech. Inform., 16:3 (2016),  247–256
  9. Solution of Cauchy problem for equation first order via Haar functions

    Izv. Saratov Univ. Math. Mech. Inform., 16:2 (2016),  151–159
  10. Affine Riesz bases and the dual function

    Mat. Sb., 207:9 (2016),  111–143
  11. Affine Systems of Walsh Type. Orthogonalization and Completion

    Izv. Saratov Univ. Math. Mech. Inform., 14:4(1) (2014),  395–400
  12. Affine Quantum Frames and Their Spectrum

    Izv. Saratov Univ. Math. Mech. Inform., 13:1(1) (2013),  32–36
  13. On Bessel Systems in a Banach Space

    Mat. Zametki, 91:2 (2012),  285–296
  14. Best approximation of functions in $L_p$ by polynomials on affine system

    Mat. Sb., 202:2 (2011),  131–158
  15. Frames in Banach Spaces

    Funktsional. Anal. i Prilozhen., 44:3 (2010),  50–62
  16. Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$

    Izv. RAN. Ser. Mat., 74:5 (2010),  115–144
  17. Affine synthesis in the space $L^2(\mathbb R^d)$

    Izv. RAN. Ser. Mat., 73:1 (2009),  177–186
  18. Projection description of bessel sequences

    Izv. Saratov Univ. Math. Mech. Inform., 9:1 (2009),  44–51
  19. Banach frames in the affine synthesis problem

    Mat. Sb., 200:9 (2009),  127–146
  20. On the components of summable functions represented by elements of families of wavelet functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 2,  53–59
  21. Convergence of Biorthogonal Series in the System of Contractions and Translations of Functions in the Spaces $L^p[0,1]$

    Mat. Zametki, 83:5 (2008),  722–740
  22. Basis conditions for systems of translates and dilates of functions in $L_p$-spaces

    Izv. Saratov Univ. Math. Mech. Inform., 7:1 (2007),  39–44
  23. Multishifts in Hilbert Spaces

    Funktsional. Anal. i Prilozhen., 39:1 (2005),  69–81
  24. Representation Systems and Projections of Bases

    Mat. Zametki, 75:6 (2004),  944–947
  25. On Perturbations of the Haar System

    Mat. Zametki, 75:3 (2004),  466–469
  26. Riesz Bases Generated by Contractions and Translations of a Function on an Interval

    Mat. Zametki, 72:4 (2002),  547–560
  27. Inequalities for the components of summable functions and their representations by elements of a system of contractions and shifts

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 8,  74–81
  28. Trigonometrical algebras

    Zap. Nauchn. Sem. POMI, 236 (1997),  183–191


© Steklov Math. Inst. of RAS, 2024