RUS  ENG
Full version
PEOPLE

Akhtyamov Azamat Mukhtarovich

Publications in Math-Net.Ru

  1. Uniqueness of reconstruction of an $n$th-order differential operator with nonseparated boundary conditions by several spectra

    Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020),  55–58
  2. On the finite spectrum of three-point boundary value problems

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:2 (2020),  130–135
  3. The finiteness of the spectrum of boundary value problems defined on a geometric graph

    Tr. Mosk. Mat. Obs., 80:2 (2019),  147–156
  4. Inverse problem for a differential operator with nonseparated boundary conditions

    Dokl. Akad. Nauk, 479:6 (2018),  616–619
  5. Determination of local inhomogeneity of the medium from the natural frequencies of string oscillations

    Proceedings of the Mavlyutov Institute of Mechanics, 13:4 (2018),  99–106
  6. Determination of boundary conditions for the fastening of strings from vibration eigenfrequencies in a medium with a variable symmetric elasticity coefficient

    Prikl. Mekh. Tekh. Fiz., 59:4 (2018),  204–211
  7. Restoration of the polynomial potential in the Sturm-Liouville problem

    Zhurnal SVMO, 20:2 (2018),  148–158
  8. Boundary inverse problem for star-shaped graph with different densities strings-edges

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:3 (2018),  5–17
  9. Inverse problem for the diffusion operator with symmetric functions and general boundary conditions

    Eurasian Math. J., 8:1 (2017),  10–22
  10. Identification of non-decaying boundary conditions

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 141 (2017),  3–12
  11. On the Spectrum of an Odd-Order Differential Operator

    Mat. Zametki, 101:5 (2017),  643–646
  12. Restoration of the linear potential in the sturm-liouville problem

    Proceedings of the Mavlyutov Institute of Mechanics, 12:2 (2017),  152–156
  13. Identification of the fixedness and loadedness of an end of an Euler–Bernoulli beam from its natural vibration frequencies

    Sib. Zh. Ind. Mat., 20:1 (2017),  3–10
  14. Identification of boundary conditions at one of the ends of a segment

    Zhurnal SVMO, 19:3 (2017),  11–23
  15. Uniqueness theorem for inverse sturm-liouville problem with nonseparated boundary conditions

    Proceedings of the Mavlyutov Institute of Mechanics, 11:2 (2016),  167–170
  16. Identification of the string boundary conditions using natural frequencies

    Proceedings of the Mavlyutov Institute of Mechanics, 11:1 (2016),  38–52
  17. Uniqueness of solution and well-posedness of the problem of determining the fastening parameters of a pipe containing flowing fluid

    Prikl. Mekh. Tekh. Fiz., 57:2 (2016),  32–45
  18. Identification of a polynomial in nonseparated boundary conditions in the case of a multiple zero eigenvalue

    Ufimsk. Mat. Zh., 7:1 (2015),  13–18
  19. Flexural model for a notched beam: Direct and inverse problems

    Prikl. Mekh. Tekh. Fiz., 54:1 (2013),  152–162
  20. On the determination of loading and fixing for one end of a rod according to its natural frequencies of oscillation

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 3,  114–129
  21. Generalizations of Borg's uniqueness theorem to the case of nonseparated boundary conditions

    Eurasian Math. J., 3:4 (2012),  10–22
  22. Tikhonov well-posedness of the identification problem for fixing conditions for mechanical systems

    Sib. Zh. Ind. Mat., 15:4 (2012),  24–37
  23. On the identification of nonseparated boundary conditions

    Zhurnal SVMO, 14:2 (2012),  40–47
  24. Diagnosing cavity in the rod

    Zhurnal SVMO, 13:2 (2011),  47–56
  25. Inverse problem for an operator pencil with nonseparated boundary conditions

    Eurasian Math. J., 1:2 (2010),  5–16
  26. Идентификация местоположения и коэффициента жёсткости пружины упругой опоры стержня

    Matem. Mod. Kraev. Zadachi, 1 (2010),  42–44
  27. On solving the problem of diagnosing defects in a small cavity in the rod

    Zhurnal SVMO, 12:3 (2010),  37–42
  28. Vibration-proof conduit fastening

    Prikl. Mekh. Tekh. Fiz., 49:1 (2008),  139–147
  29. Определение параметров твердого тела, прикрепленного к одному из концов балки, по собственным частотам колебаний

    Sib. Zh. Ind. Mat., 11:4 (2008),  19–24
  30. On Coefficients of Eigenfunction Expansions for Boundary-Value Problems with Parameter in Boundary Conditions

    Mat. Zametki, 75:4 (2004),  493–506
  31. On the Uniqueness of the Solution of an Inverse Spectral Problem

    Differ. Uravn., 39:8 (2003),  1011–1015
  32. Calculating the Coefficients of the Expansion in Derived Keldysh Chains for an Elliptic Problem with Parameter in the Boundary Condition

    Mat. Zametki, 69:4 (2001),  622–625
  33. On uniqueness of boundary conditions regeneration by the spectrum

    Fundam. Prikl. Mat., 6:4 (2000),  995–1006
  34. On the coefficients of expansions in eigenfunctions of a boundary value problem with a spectral parameter in the boundary conditions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 2,  13–18
  35. On the determination of a boundary condition from a finite set of eigenvalues

    Differ. Uravn., 35:8 (1999),  1127–1128
  36. Calculation of the coefficients of expansions in derivative chains of a spectral problem

    Mat. Zametki, 51:6 (1992),  137–139

  37. Andrei Andreevich Shkalikov (on his seventieth birthday)

    Tr. Mosk. Mat. Obs., 80:2 (2019),  133–145


© Steklov Math. Inst. of RAS, 2025