RUS  ENG
Full version
PEOPLE

Kulikov Anatolii Nikolaevich

Publications in Math-Net.Ru

  1. On the uniqueness problem for a central invariant manifold

    TMF, 220:1 (2024),  59–73
  2. The influence of delay and spatial factors on the dynamics of solutions in the mathematical model “supply-demand”

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 230 (2023),  75–87
  3. The influence of competition on the dynamics of macroeconomic systems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 228 (2023),  20–31
  4. Invariant manifolds and attractors of a periodic boundary-value problem for the Kuramoto–Sivashinsky equation with allowance for dispersion

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 226 (2023),  69–79
  5. Local attractors of one of the original versions of the Kuramoto–Sivashinsky equation

    TMF, 215:3 (2023),  339–359
  6. Invariant tori of the weakly dissipative version of the Ginzburg—Landau equation

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216 (2022),  66–75
  7. The Keynes model of the business cycle and the problem of diffusion instability

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 207 (2022),  77–90
  8. Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation

    TMF, 212:1 (2022),  40–61
  9. Invariant manifolds and the global attractor of the generalised nonlocal Ginzburg-Landau equation in the case of homogeneous dirichlet boundary conditions

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 38:1 (2022),  9–27
  10. Invariant manifolds of a weakly dissipative version of the nonlocal Ginzburg–Landau equation

    Avtomat. i Telemekh., 2021, no. 2,  94–110
  11. On the possibility of implementing the Landau–Hopf scenario of transition to turbulence in the generalized model “multiplier-accelerator”

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 203 (2021),  39–49
  12. Attractor of the generalized Cahn–Hilliard equation, on which all solutions are unstable

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195 (2021),  57–67
  13. Cahn–Hilliard equation with two spatial variables. Pattern formation

    TMF, 207:3 (2021),  438–457
  14. Inertial invariant manifolds of a nonlinear semigroup of operators in a Hilbert space

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 186 (2020),  57–66
  15. A possibility of realizing the Landau–Hopf scenario in the problem of tube oscillations under the action of a fluid flow

    TMF, 203:1 (2020),  78–90
  16. One-phase and two-phase solutions of the focusing nonlinear Schrodinger equation

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 2,  18–34
  17. Bifurcations of invariant tori in second-order quasilinear evolution equations in Hilbert spaces and scenarios of transition to turbulence

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 168 (2019),  45–52
  18. Local bifurcations in the Cahn–Hilliard and Kuramoto–Sivashinsky equations and in their generalizations

    Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019),  670–683
  19. Local Attractors in One Boundary-Value Problem for the Kuramoto–Sivashinsky Equation

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 148 (2018),  58–65
  20. The Kuramoto–Sivashinsky equation. A local attractor filled with unstable periodic solutions

    Model. Anal. Inform. Sist., 25:1 (2018),  92–101
  21. Local bifurcations in the periodic boundary value problem for the generalized Kuramoto–Sivashinsky equation

    Avtomat. i Telemekh., 2017, no. 11,  20–33
  22. Nonlocal model for the formation of ripple topography induced by ion bombardment. Nonhomogeneous nanostructures

    Matem. Mod., 28:3 (2016),  33–50
  23. Stability and bifurcations of undulate solutions for one functional-differential equation

    Izv. IMI UdGU, 2015, no. 2(46),  60–68
  24. Formation of wavy nanostructures on the surface of flat substrates by ion bombardment

    Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012),  930–945
  25. Resonances in the problem of the panel flutter in a supersonic gas flow

    Model. Anal. Inform. Sist., 18:1 (2011),  56–67
  26. Bifurcation of the nanostructures induced by ion bombardment

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 4,  86–99
  27. 1 : 3 Resonance is a possible cause of nonlinear panel flutter

    Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011),  1266–1279
  28. Business cycles and torus in the non-homogeneous multiplier-accelerator model

    Model. Anal. Inform. Sist., 16:4 (2009),  86–95
  29. After critical and precritical bifurcations of progressive wave in a generalized Ginzburg–Landau equation

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 4,  71–78
  30. Spatial non-homogeneous invariant tori in the Multiplier-Accelerator model

    Model. Anal. Inform. Sist., 15:1 (2008),  45–50
  31. Travelling waves bifurcation of the modified Ginzburg-Landau's equation

    Model. Anal. Inform. Sist., 15:1 (2008),  10–15
  32. The attractors of two boundary value problems for a modifieded nonlinear telegraph equation

    Nelin. Dinam., 4:1 (2008),  57–68
  33. Bifurcation of autowaves of generalized cubic Schrödinger equation with three independent variables

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 3,  23–34
  34. Attractors of Singularly Perturbed Parabolic Systems of First Degree of Nonroughness in a Plane Domain

    Mat. Zametki, 75:5 (2004),  663–669
  35. Invariant Tori of a Class of Point Transformations: Preservation of an Invariant Torus Under Perturbations

    Differ. Uravn., 39:6 (2003),  738–753
  36. Invariant Tori of a Class of Point Mappings: The Annulus Principle

    Differ. Uravn., 39:5 (2003),  584–601
  37. Attractors of a Nonlinear Boundary Value Problem Arising in Aeroelasticity

    Differ. Uravn., 37:3 (2001),  397–401
  38. Bifurcation of auto-oscillations in the classical system of telegraph equations with a nonclassical nonlinear boundary condition

    Mat. Zametki, 66:6 (1999),  948–951
  39. An analogue of the Hopf bifurcation theorem in a problem on the mathematical investigation of a nonlinear panel flutter with a small damping coefficient

    Differ. Uravn., 29:5 (1993),  780–785
  40. Nonlinear flutter panel: the risk of hard excitation of vibrations

    Differ. Uravn., 28:6 (1992),  1080–1082
  41. Convex optimization with prescribed accuracy

    Zh. Vychisl. Mat. Mat. Fiz., 30:5 (1990),  663–671
  42. A finite method for solving systems of convex inequalities

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 11,  59–63

  43. In memory of Terekhin Mihail Tihonovich

    Zhurnal SVMO, 23:1 (2021),  110–111
  44. To the eighty-fifth anniversary of Mikhail Tikhonovich Terekhin

    Zhurnal SVMO, 21:1 (2019),  114–115


© Steklov Math. Inst. of RAS, 2024