RUS  ENG
Full version
PEOPLE

Fomenko Valentin Trofimovich

Publications in Math-Net.Ru

  1. The existence of nontrivial ARG deformations of surfaces with an edge under generalized bushing connections in Riemannian space

    University proceedings. Volga region. Physical and mathematical sciences, 2010, no. 3,  3–14
  2. On metrics arising on surfaces of constant mean curvature

    Mat. Zametki, 77:4 (2005),  617–622
  3. On metrics that arise on surfaces of constant mean curvature

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 10,  71–74
  4. Classification of Two-Dimensional Surfaces with Zero Normal Torsion in Four-Dimensional Spaces of Constant Curvature

    Mat. Zametki, 75:5 (2004),  744–756
  5. Distribution of flex external constraints of generalized sliding in the theory of infinitesimal deformations of surfaces

    Tr. Geom. Semin., 24 (2003),  169–178
  6. An Analog of the Sauer Theorem

    Mat. Zametki, 74:3 (2003),  463–470
  7. Two-dimensional surfaces with flat normal connections in spaces of constant curvature carrying geodesics of constant curvature

    Mat. Zametki, 68:4 (2000),  579–586
  8. A property of conformal infinitesimal deformations of multidimensional surfaces in Riemannian space

    Mat. Zametki, 59:2 (1996),  284–290
  9. Surfaces in Euclidean space with planar normal connectivity and zero normal torsion

    Mat. Zametki, 54:1 (1993),  3–16
  10. A generalization of the Darboux surfaces

    Mat. Zametki, 48:2 (1990),  107–113
  11. Extension of infinitesimal bendings of surfaces to analytic bendings under external constraints

    Mat. Zametki, 45:2 (1989),  30–39
  12. Transformations of $R$-surfaces of Euclidean space preserving their Grassman image

    Mat. Zametki, 45:1 (1989),  20–27
  13. Surfaces of codimension 2 with zero normal torsion that carry a conjugate coordinate net in a Euclidean space

    Sibirsk. Mat. Zh., 30:1 (1989),  165–174
  14. Application of generalized analytic functions on Riemann surfaces to the investigation of $G$-deformations of two-dimensional surfaces in $E^4$

    Mat. Sb. (N.S.), 136(178):4(8) (1988),  561–573
  15. Local $\Sigma$-realization of metrics of positive curvature in Euclidean space

    Uspekhi Mat. Nauk, 41:6(252) (1986),  173–174
  16. Investigations of certain classes of two-sided external constraints of the theory of bendings of surfaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 11,  71–74
  17. Class of correct exterior connections in the theory of deformations of surfaces

    Mat. Zametki, 31:6 (1982),  937–945
  18. On $\Sigma$ – realizations of metrics of positive curvature

    Mat. Sb. (N.S.), 117(159):4 (1982),  523–533
  19. Rigidity of convex surfaces with isolated boundary

    Mat. Zametki, 26:1 (1979),  123–128
  20. Continuous bendings of convex surfaces with boundary conditions

    Mat. Sb. (N.S.), 110(152):4(12) (1979),  493–504
  21. Some properties of two-dimensional surfaces with zero normal torsion in $E^4$

    Mat. Sb. (N.S.), 106(148):4(8) (1978),  589–603
  22. On the bending of surfaces of genus $\rho>0$ with boundary in a space of constant curvature under external constraints

    Dokl. Akad. Nauk SSSR, 231:1 (1976),  43–45
  23. On bendings of surfaces of genus $p\ge0$ of positive extrinsic curvature in a Riemannian space

    Dokl. Akad. Nauk SSSR, 227:5 (1976),  1064–1066
  24. The rigidity of mirror-like protruded surfaces

    Mat. Zametki, 19:3 (1976),  469–479
  25. Nonbendability of closed surfaces of genus $p\geqslant1$ and positive extrinsic curvature

    Mat. Sb. (N.S.), 101(143):3(11) (1976),  402–415
  26. Single-valued determination of closed surfaces of genus $p\ge1$ in a space of constant curvature

    Mat. Zametki, 16:3 (1974),  441–445
  27. On the quasicorrectness of the generalized rotation condition in the theory of infinitesimal bendings of surfaces

    Mat. Sb. (N.S.), 93(135):1 (1974),  50–61
  28. The quasicorrectness of external constraints in the theory of infinitesimal bendings

    Sibirsk. Mat. Zh., 15:1 (1974),  152–161
  29. On the rigidity and unique determination of closed surfaces of genus $p\ge1$ in a Riemannian space

    Dokl. Akad. Nauk SSSR, 213:1 (1973),  45–48
  30. The quasicorrectness of exterior connections in the theory of infinitesimal bendings of surfaces

    Dokl. Akad. Nauk SSSR, 212:6 (1973),  1305–1308
  31. Unique determination of convex surfaces with boundary in Lobacevskii space

    Mat. Sb. (N.S.), 88(130):3(7) (1972),  376–381
  32. On Darboux surfaces in a Riemannian space

    Mat. Sb. (N.S.), 88(130):2(6) (1972),  187–193
  33. The rigidity of surfaces with boundary, in a Riemannian space

    Dokl. Akad. Nauk SSSR, 187:2 (1969),  280–283
  34. Some formulas arising in conformal mapping of a Riemann space onto a Euclidean space and corollaries following from them

    Mat. Zametki, 6:5 (1969),  513–520
  35. On infinitesimal deformations of convex surfaces with a boundary condition of generalized translation

    Mat. Sb. (N.S.), 80(122):2(10) (1969),  159–162
  36. The rigidity of a Darboux surface with boundary in a Riemannian space

    Dokl. Akad. Nauk SSSR, 181:6 (1968),  1346–1349
  37. Some results in the theory of infinitesimal bending of surfaces

    Mat. Sb. (N.S.), 72(114):3 (1967),  388–411
  38. Estimate of the power of a set of non-rigid sleeve couplings for surfaces of revolution

    Dokl. Akad. Nauk SSSR, 169:4 (1966),  781–784
  39. Distribution of nonrigid bushing connections for a convex surface

    Dokl. Akad. Nauk SSSR, 166:6 (1966),  1300–1303
  40. Rigidity of surfaces with boundary with positive exterior curvature in a Riemannian space

    Sibirsk. Mat. Zh., 7:4 (1966),  960–962
  41. Infinitesimal bendings of convex surfaces with a generalized sliding condition at the boundary

    Sibirsk. Mat. Zh., 7:4 (1966),  939–953
  42. Infinitley small deformations of surfaces wih sleeve junctions

    Dokl. Akad. Nauk SSSR, 161:4 (1965),  780–782
  43. Infinitesimal deformations of convex surfaces with sleeve junctions

    Mat. Sb. (N.S.), 67(109):2 (1965),  310–328
  44. Deformation of surfaces with preservation of points of congruence

    Mat. Sb. (N.S.), 66(108):1 (1965),  127–141
  45. Infinitesimal deformations of surfaces with sleeve junctions

    Dokl. Akad. Nauk SSSR, 157:4 (1964),  810–813
  46. Bending and unique determination of surfaces of positive curvature with boundary

    Mat. Sb. (N.S.), 63(105):3 (1964),  409–425
  47. On the unique determination of ovaloids with cuts

    Dokl. Akad. Nauk SSSR, 152:6 (1963),  1320–1323
  48. On the single-valued determination of a piecewise regular surface of positive curvature with a boundary condition

    Dokl. Akad. Nauk SSSR, 152:5 (1963),  1023–1026
  49. On the bending of a surface with boundary

    Dokl. Akad. Nauk SSSR, 151:4 (1963),  793–795
  50. On the bending of surfaces of positive curvature with boundary

    Sibirsk. Mat. Zh., 4:1 (1963),  32–47
  51. On the bending and single-valued definiteness of surfaces of positive curvature with boundary

    Dokl. Akad. Nauk SSSR, 144:2 (1962),  283–285
  52. An investigation of solutions of the fundamental equations of the theory of surfaces

    Dokl. Akad. Nauk SSSR, 144:1 (1962),  69–71
  53. The bending of surfaces of positive curvature under certain boundary conditions

    Dokl. Akad. Nauk SSSR, 142:2 (1962),  286–288
  54. The bending of surfaces of positive curvature under certain boundary conditions

    Dokl. Akad. Nauk SSSR, 140:5 (1961),  987–989

  55. The seventieth birthday of Yurii Akhmetovich Aminov

    Zh. Mat. Fiz. Anal. Geom., 9:2 (2013),  267–272
  56. Idzhad Khakovich Sabitov (on his 70th birthday)

    Uspekhi Mat. Nauk, 63:6(384) (2008),  183–186


© Steklov Math. Inst. of RAS, 2025