RUS  ENG
Full version
PEOPLE

Sherstyukov Vladimir Borisovich

Publications in Math-Net.Ru

  1. Lower average estimate for the minimum modulus on circles for an entire function of genus zero

    CMFD, 70:1 (2024),  150–162
  2. On limit cycles of autonomous systems

    CMFD, 70:1 (2024),  77–98
  3. Calculation of the Limit of a Special Sequence of Trigonometric Functions

    Mat. Zametki, 115:2 (2024),  298–303
  4. Strengthening of Gaisin's lemma on the minimum modulus of even canonical products

    Chebyshevskii Sb., 24:1 (2023),  127–138
  5. Enveloping of the Values of an Analytic Function Related to the Number $e$

    Mat. Zametki, 113:3 (2023),  374–391
  6. Sylvester problem, coverings by shifts, and uniqueness theorems for entire functions

    Ufimsk. Mat. Zh., 15:4 (2023),  30–41
  7. Lower bound for minimum of modulus of entire function of genus zero with positive roots in terms of degree of maximal modulus at frequent sequence of points

    Ufimsk. Mat. Zh., 14:4 (2022),  80–99
  8. On Taylor coefficients of analytic function related with Euler number

    Ufimsk. Mat. Zh., 14:3 (2022),  74–89
  9. On the connection of Bernstein and Kantorovich polynomials for a symmetric module function

    Vladikavkaz. Mat. Zh., 24:1 (2022),  87–99
  10. On a probabilistic Bernstein model

    Teor. Veroyatnost. i Primenen., 66:2 (2021),  392–401
  11. Integral representations of quantities associated with Gamma function

    Ufimsk. Mat. Zh., 13:4 (2021),  51–64
  12. Comparative analysis of two-sided estimates of the central binomial coefficient

    Chelyab. Fiz.-Mat. Zh., 5:1 (2020),  70–95
  13. On the arithmetic properties of a number $\sqrt[3]{2}+ \sqrt{3}$

    Math. Ed., 2020, no. 3(95),  2–7
  14. Yuri Fedorovich Korobeinik (on his 90's anniversary)

    Vladikavkaz. Mat. Zh., 22:3 (2020),  151–157
  15. Estimates of indicators of an entire function with negative roots

    Vladikavkaz. Mat. Zh., 22:3 (2020),  30–46
  16. Generalized Popoviciu expansions for Bernstein polynomials of a rational module

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 170 (2019),  71–117
  17. Asymptotic properties of entire functions with given laws of distribution of zeros

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 161 (2019),  104–129
  18. Algebraic representation for Bernstein polynomials on the symmetric interval and combinatorial relations

    Vladikavkaz. Mat. Zh., 21:3 (2019),  68–86
  19. Sharp bounds for asymptotic characteristics of growth of entire functions with zeros on given sets

    Fundam. Prikl. Mat., 22:1 (2018),  51–97
  20. On growth rate of coefficients in Bernstein polynomials for the standard modulus function on a symmetric interval

    Ufimsk. Mat. Zh., 10:3 (2018),  60–78
  21. Computer analysis of the attractors of zeros for classical Bernstein polynomials

    Fundam. Prikl. Mat., 21:4 (2016),  151–174
  22. Bernstein polynomials for a standard module function on the symmetric interval

    Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016),  425–435
  23. Minimal value for the type of an entire function of order $\rho\in(0,1)$, whose zeros lie in an angle and have a prescribed density

    Ufimsk. Mat. Zh., 8:1 (2016),  113–126
  24. Gluing rule for Bernstein polynomials on the symmetric interval

    Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015),  288–300
  25. Distribution of the zeros of canonical products and weighted condensation index

    Mat. Sb., 206:9 (2015),  139–180
  26. Application of Krein’s series to calculation of sums containing zeros of the Bessel functions

    Zh. Vychisl. Mat. Mat. Fiz., 55:4 (2015),  575–581
  27. The problem of Leont'ev on entire functions of completely regular growth

    Izv. Saratov Univ. Math. Mech. Inform., 13:2(1) (2013),  30–35
  28. On the Growth of Entire Functions with Discretely Measurable Zeros

    Mat. Zametki, 91:5 (2012),  674–690
  29. The module function approximation by Bernstein polynomials

    Vestnik Chelyabinsk. Gos. Univ., 2012, no. 15,  6–40
  30. On the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros

    Izv. RAN. Ser. Mat., 75:1 (2011),  3–28
  31. Expanding the reciprocal of an entire function with zeros in a strip in a Kreǐn series

    Mat. Sb., 202:12 (2011),  137–156
  32. Dual characterization of absolutely representing systems in inductive limits of Banach spaces

    Sibirsk. Mat. Zh., 51:4 (2010),  930–943
  33. Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation

    Mat. Sb., 200:3 (2009),  147–160
  34. On the Regularity of Growth of Canonical Products with Real Zeros

    Mat. Zametki, 82:4 (2007),  621–630
  35. Nontrivial expansions of zero and representation of analytic functions by series of simple fractions

    Sibirsk. Mat. Zh., 48:2 (2007),  458–473
  36. On Some Criteria for Completely Regular Growth of Entire Functions of Exponential Type

    Mat. Zametki, 80:1 (2006),  119–130
  37. On a Problem of Leont'ev and Representing Systems of Exponentials

    Mat. Zametki, 74:2 (2003),  301–313
  38. On a question about $\gamma$-sufficient sets

    Sibirsk. Mat. Zh., 41:4 (2000),  935–943

  39. On one symmetric inequality

    Math. Ed., 2021, no. 4(100)-2,  69–74


© Steklov Math. Inst. of RAS, 2024