RUS  ENG
Full version
PEOPLE

Penkin Oleg Mikhailovich

Publications in Math-Net.Ru

  1. Perron's method in the Dirichlet problem for the soft Laplacian on a stratified set

    Dokl. RAN. Math. Inf. Proc. Upr., 521 (2025),  23–27
  2. On removable singularities of harmonic functions on a stratified set

    Dokl. RAN. Math. Inf. Proc. Upr., 518 (2024),  5–9
  3. Rayleigh principle for stratified laplacian

    Applied Mathematics & Physics, 56:3 (2024),  175–180
  4. Harnack's inequality for harmonic functions on stratified sets

    Sibirsk. Mat. Zh., 64:5 (2023),  971–981
  5. An analog of the Sobolev inequality on a stratified set

    Algebra i Analiz, 30:5 (2018),  149–158
  6. The Poincaré inequality and $p$-connectedness of a stratified set

    Sibirsk. Mat. Zh., 59:6 (2018),  1291–1302
  7. On the Multiplicity of Eigenvalues of the Sturm–Liouville Problem on Graphs

    Mat. Zametki, 99:4 (2016),  489–501
  8. Estimate of the First Eigenvalue of the Laplacian on a Graph

    Mat. Zametki, 96:6 (2014),  885–895
  9. The Normal Derivative Lemma for the Laplacian on a Polyhedral Set

    Mat. Zametki, 96:1 (2014),  116–125
  10. Strong Maximum Principle for an Elliptic Operator on a Stratified Set

    Mat. Zametki, 92:2 (2012),  276–290
  11. The Mean-Value Theorem for Elliptic Operators on Stratified Sets

    Mat. Zametki, 81:3 (2007),  417–426
  12. Strong Stratified Sets and the Friedrichs Inequality

    Differ. Uravn., 40:1 (2004),  69–76
  13. The Fourier method in the Cauchy problem for a fourth-order equation on stratified sets

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 8,  67–71
  14. The Maximum Principle for Parabolic Inequalities on Stratified Sets

    Mat. Zametki, 73:2 (2003),  244–257
  15. An analog of the lemma on the normal derivative for an elliptic equation on a stratified set

    Differ. Uravn., 36:2 (2000),  226–232
  16. On the spectrum of a uniform network of strings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 4,  23–27
  17. Weak Solvability of the Dirichlet Problem on Stratified Sets

    Mat. Zametki, 68:6 (2000),  874–886
  18. On the maximum principle for an elliptic equation on stratified sets

    Differ. Uravn., 34:10 (1998),  1433–1434
  19. On the solvability of elliptic boundary value problems on stratified sets

    Differ. Uravn., 34:9 (1998),  1289–1290
  20. On incompatible inequalities for elliptic equations on stratified sets

    Differ. Uravn., 34:8 (1998),  1107–1113
  21. A nonlinear boundary value problem on a graph

    Differ. Uravn., 34:5 (1998),  629–637
  22. On the maximum principle for an elliptic equation on a two-dimensional cellular complex

    Dokl. Akad. Nauk, 352:4 (1997),  462–465
  23. On the weak maximum principle for an elliptic equation on a two-dimensional cellular complex

    Differ. Uravn., 33:10 (1997),  1404–1409
  24. On some qualitative properties of equations on a one-dimensional cell complex

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 11,  57–64
  25. On some qualitative properties of equations on a one-dimensional $CW$-complex

    Mat. Zametki, 59:5 (1996),  777–780
  26. Sturm theorems for equations on graphs

    Dokl. Akad. Nauk SSSR, 309:6 (1989),  1306–1308
  27. Comparison theorems for equations on graphs

    Differ. Uravn., 25:7 (1989),  1141–1150
  28. On a boundary value problem on a graph

    Differ. Uravn., 24:4 (1988),  701–703


© Steklov Math. Inst. of RAS, 2025