RUS  ENG
Full version
PEOPLE

Egorova Irina Evgen'evna

Publications in Math-Net.Ru

  1. How Discrete Spectrum and Resonances Influence the Asymptotics of the Toda Shock Wave

    SIGMA, 17 (2021), 045, 32 pp.
  2. Long-time asymptotics for the Toda shock problem: non-overlapping spectra

    Zh. Mat. Fiz. Anal. Geom., 14:4 (2018),  406–451
  3. On the long-time asymptotics for the Korteweg–de Vries equation with steplike initial data associated with rarefaction waves

    Zh. Mat. Fiz. Anal. Geom., 13:4 (2017),  325–343
  4. On the form of dispersive shock waves of the Korteweg–de Vries equation

    Zh. Mat. Fiz. Anal. Geom., 12:1 (2016),  3–16
  5. Dispersion estimates for one-dimensional Schrödinger and Klein–Gordon equations revisited

    Uspekhi Mat. Nauk, 71:3(429) (2016),  3–26
  6. Inverse Scattering Theory for Schrödinger Operators with Steplike Potentials

    Zh. Mat. Fiz. Anal. Geom., 11:2 (2015),  123–158
  7. On asymptotic properties of polynomials orthogonal with respect to varying weights and related topics of spectral theory

    Algebra i Analiz, 25:2 (2013),  101–124
  8. A Paley–Wiener theorem for periodic scattering with applications to the Korteweg–de Vries equation

    Zh. Mat. Fiz. Anal. Geom., 6:1 (2010),  21–33
  9. Scattering theory for Jacobi operators with general step-like quasiperiodic background

    Zh. Mat. Fiz. Anal. Geom., 4:1 (2008),  33–62
  10. Limit sets for the discrete spectrum of complex Jacobi matrices

    Mat. Sb., 196:6 (2005),  43–70
  11. Jacobi operator with step-like asymptotically periodic coefficients

    Mat. Fiz. Anal. Geom., 10:3 (2003),  425–442
  12. The scattering problem for step-like Jacobi operator

    Mat. Fiz. Anal. Geom., 9:2 (2002),  188–205
  13. On a class of almost periodic solutions of the KdV equation with a nowhere dense spectrum

    Dokl. Akad. Nauk, 323:2 (1992),  219–222


© Steklov Math. Inst. of RAS, 2024