RUS  ENG
Full version
PEOPLE

Temirgaliev Nurlan Temirgalievich

Publications in Math-Net.Ru

  1. Equivalence of computed tomography problem with the problem of recovery of functions by finite convolutions in a scheme of computational (numerical) diameter

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12,  95–102
  2. Large-scale equivalence of norms of Radon transform and initial function

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 8,  87–92
  3. Formulas for approximate calculation of the Chebyshev coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 2,  79–85
  4. The Radon transform in the scheme C(N)D-inverstigations and the quasi-Monte Carlo theory

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 3,  98–104
  5. Orderly exact calculation of integrals of products of functions by the method of tenzor products of functionals

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 11,  94–99
  6. Computational (Numerical) diameter in a context of general theory of a recovery

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 1,  89–97
  7. Theory of Radon Transform in the Concept of Computational (Numerical) Diameter and Methods of the Quasi-Monte Carlo Theory

    BULLETIN of the L.N. Gumilyov Eurasian National University. MATHEMATICS.COMPUTER SCIENCE. MECHANICS Series, 129:4 (2019),  89–135
  8. Theory of Radon Transform in the Concept of Computational (Numerical) Diameter and Methods of the Quasi-Monte Carlo Theory

    BULLETIN of the L.N. Gumilyov Eurasian National University. MATHEMATICS.COMPUTER SCIENCE. MECHANICS Series, 129:4 (2019),  8–53
  9. The concept of S.M.Voronin in the problem of comparisons of deterministic and random computation in the same terms

    BULLETIN of the L.N. Gumilyov Eurasian National University. MATHEMATICS.COMPUTER SCIENCE. MECHANICS Series, 128:3 (2019),  8–33
  10. Transformation and Absolute Convergence of Trigonometric Fourier Series

    BULLETIN of the L.N. Gumilyov Eurasian National University. MATHEMATICS.COMPUTER SCIENCE. MECHANICS Series, 127:2 (2019),  8–26
  11. Discretization of solutions of partial differential equations in the context of the Computational (numerical) diameter

    BULLETIN of the L.N. Gumilyov Eurasian National University. MATHEMATICS.COMPUTER SCIENCE. MECHANICS Series, 126:1 (2019),  8–51
  12. On some special effects in theory on numerical integration and functions recovery

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 3,  96–102
  13. Embedding and Approximation Theories in the Context of Computational (Numerical) Diameter and Internal Problems of the Theory of Functions

    BULLETIN of the L.N. Gumilyov Eurasian National University. MATHEMATICS.COMPUTER SCIENCE. MECHANICS Series, 125:4 (2018),  8–68
  14. Approximation Theory, Computational Mathematics and Numerical Analysis in new conception of Computational (Numerical) Diameter

    BULLETIN of the L.N. Gumilyov Eurasian National University. MATHEMATICS.COMPUTER SCIENCE. MECHANICS Series, 124:3 (2018),  8–88
  15. Order estimates of the norms of derivatives of functions with zero values on linear functionals and their applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 3,  89–95
  16. “Geometry of numbers” in a context of algebraic theory of numbers

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 10,  92–97
  17. Rapid “algebraic” Fourier transforms on uniformly distributed meshes

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 5,  93–98
  18. A criterion for embedding of anisotropic Sobolev–Morrey spaces into the space of uniformly continuous functions

    Sibirsk. Mat. Zh., 57:5 (2016),  1156–1170
  19. Approximative possibilities of computational aggregates of the “Smolyak type” with Dirichlet, Fejer and Vallée-Poussin kernels in the scale of Ul'yanov classes

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 7,  75–81
  20. Criteria of embedding of classes of Morrey type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 5,  80–85
  21. Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes

    Zh. Vychisl. Mat. Mat. Fiz., 55:9 (2015),  1474–1485
  22. General algorithm for the numerical integration of functions of several variables

    Zh. Vychisl. Mat. Mat. Fiz., 54:7 (2014),  1059–1077
  23. Discretization of solutions to a wave equation, numerical differentiation, and function reconstruction for a computer (computing) diameter

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 8,  86–93
  24. Exact Orders of Computational (Numerical) Diameters in Problems of Reconstructing Functions and Sampling Solutions of the Klein–Gordon Equation from Fourier Coefficients

    Sovrem. Probl. Mat., 17 (2013),  179–207
  25. On the Discretization of Solutions of the Wave Equation with Initial Conditions from Generalized Sobolev Classes

    Mat. Zametki, 91:3 (2012),  459–463
  26. Applications of Smolyak quadrature formulas to the numerical integration of Fourier coefficients and in function recovery problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3,  52–71
  27. On an Algorithm for Constructing Uniformly Distributed Korobov Grids

    Mat. Zametki, 87:6 (2010),  948–950
  28. An application of tensor products of functionals in problems of numerical integration

    Izv. RAN. Ser. Mat., 73:2 (2009),  183–224
  29. On the Order of Discrepancy of the Smolyak Grid

    Mat. Zametki, 85:6 (2009),  947–950
  30. Application of divisor theory to the construction of tables of optimal coefficients for quadrature formulas

    Zh. Vychisl. Mat. Mat. Fiz., 49:1 (2009),  14–25
  31. Informativeness of all the linear functionals in the recovery of functions in the classes $H_p^\omega$

    Mat. Sb., 198:11 (2007),  3–20
  32. Discretization of the solutions to Poisson's equation

    Zh. Vychisl. Mat. Mat. Fiz., 46:9 (2006),  1594–1604
  33. Informativeness of Linear Functionals

    Mat. Zametki, 73:6 (2003),  803–812
  34. Efficiency of numerical integration algorithms related to divisor theory in cyclotomic fields

    Mat. Zametki, 61:2 (1997),  297–301
  35. On the construction of probability measures of functional classes

    Trudy Mat. Inst. Steklova, 218 (1997),  397–402
  36. Application of the theory of divisors to the approximate reconstruction and integration of periodic functions in several variables

    Dokl. Akad. Nauk SSSR, 310:5 (1990),  1050–1054
  37. Mean-square errors for numerical integration algorithms that are connected with the theory of divisors in cyclotomic fields

    Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 8,  90–93
  38. Application of the divisors theory to numerical integration of periodic functions in several variables

    Mat. Sb., 181:4 (1990),  490–505
  39. Quadrature formulas associated with divisors of the field of Gaussian numbers

    Mat. Zametki, 46:2 (1989),  34–41
  40. Application of Banach measure to quadrature formulas

    Mat. Zametki, 39:1 (1986),  52–59
  41. Imbedding of classes $H_p^\omega$ in Lorentz spaces

    Sibirsk. Mat. Zh., 24:2 (1983),  160–172
  42. Embedding in some Lorentz spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 6,  83–85
  43. Imbedding of certain classes of functions in $C([0,2\pi]^m)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 8,  88–90
  44. The inclusion of certain classes of functions

    Mat. Zametki, 20:6 (1976),  835–841
  45. A certain embedding theorem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 7,  103–111
  46. Conditions under which higher derivatives belong to the classes $\varphi(L)$

    Mat. Zametki, 14:4 (1973),  479–486
  47. A connection between inclusion theorems and the uniform convergence of multiple Fourier series

    Mat. Zametki, 12:2 (1972),  139–148

  48. Leonid Aleksandrovich Aksent'ev

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 3,  98–100
  49. Introdaction of the Editor-in-Ñhief of the journal "The Bulletin of the L.N. Gumilyov Eurasian National University. Mathematics. Computer Science. Mechanics series" about the issue purposes and the ways of its implementation

    BULLETIN of the L.N. Gumilyov Eurasian National University. MATHEMATICS.COMPUTER SCIENCE. MECHANICS Series, 122:1 (2018),  8–69


© Steklov Math. Inst. of RAS, 2024