RUS  ENG
Full version
PEOPLE

Mikhalev Aleksandr Aleksandrovich

Publications in Math-Net.Ru

  1. Research activity of the Chair of Higher Algebra

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025, no. 1,  10–16
  2. Primitive and almost primitive elements of Schreier varieties

    Fundam. Prikl. Mat., 21:2 (2016),  3–35
  3. Cryptographic algorithms on groups and algebras

    Fundam. Prikl. Mat., 20:1 (2015),  205–222
  4. Almost primitive elements of free nonassociative algebras of small ranks

    Fundam. Prikl. Mat., 17:1 (2012),  127–141
  5. Primitive Elements of Free Commutative Non-associative Algebras and Free Anti-commutative Non-associative Algebras

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:4 (2010),  105–124
  6. Primitive elements of free nonassociative algebras

    Fundam. Prikl. Mat., 13:5 (2007),  171–192
  7. Free left-symmetric superalgebras

    Fundam. Prikl. Mat., 2:2 (1996),  611–613
  8. Ranks of subalgebras of free Lie superalgebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 2,  36–40
  9. Endomorphisms of free associative algebras over commutative rings and their Jacobian matrices

    Fundam. Prikl. Mat., 1:1 (1995),  177–189
  10. A basis for free shuffle superalgebras

    Uspekhi Mat. Nauk, 50:1(301) (1995),  199–200
  11. The rank of an element of a free Lie $(p)$-superalgebra

    Dokl. Akad. Nauk, 334:6 (1994),  690–693
  12. An example of a non-free Lie algebra of cohomological dimension 1

    Uspekhi Mat. Nauk, 49:1(295) (1994),  203–204
  13. An endomorphism of a free Lie algebra that preserves the property of primitiveness of elements is an automorphism

    Uspekhi Mat. Nauk, 48:6(294) (1993),  149–150
  14. Differential Lie superalgebras

    Uspekhi Mat. Nauk, 48:5(293) (1993),  179–180
  15. Images of inner derivations of free Lie algebras and superalgebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 1,  35–38
  16. On right ideals of a free associative algebra, generated by free colour Lie superalgebras and (P-)superalgebras

    Uspekhi Mat. Nauk, 47:5(287) (1992),  187–188
  17. On fixed points of a free chromatic Lie superalgebra under the action of a finite group of linear automorphisms

    Uspekhi Mat. Nauk, 47:4(286) (1992),  205–206
  18. Annihilators of an element of a free Lie algebra

    Uspekhi Mat. Nauk, 47:1(283) (1992),  205–206
  19. Free colored Lie superrings

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 10,  46–49
  20. Ado–Iwasawa theorem, graded Hopf algebras and residual finiteness of colored ($p-$) Lie superalgebras and their universal enveloping algebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 5,  72–74
  21. Embedding of Lie superalgebras of countable rank in Lie superalgebras with two generators

    Uspekhi Mat. Nauk, 45:6(276) (1990),  139–140
  22. A composition lemma and the word problem for color Lie superalgebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 5,  88–91
  23. Subalgebras of free Lie $p$-superalgebras

    Mat. Zametki, 43:2 (1988),  178–191
  24. Free color Lie superalgebras

    Dokl. Akad. Nauk SSSR, 286:3 (1986),  551–554
  25. Subalgebras of free colored Lie superalgebras

    Mat. Zametki, 37:5 (1985),  653–661

  26. Alexey Yakovlevich Kanel-Belov

    Chebyshevskii Sb., 24:4 (2023),  380–400
  27. Ualbai Utmakhanbetovich Umirbaev (on his 60th birthday)

    Uspekhi Mat. Nauk, 76:2(458) (2021),  187–192
  28. Viktor Timofeevich Markov (21.06.1948—15.07.2019)

    Fundam. Prikl. Mat., 23:2 (2020),  3–16
  29. Alexandr Alexandrovich Nechaev (7.8.1945–14.11.2014)

    Fundam. Prikl. Mat., 20:1 (2015),  3–7
  30. Aleksandr Sergeevitch Mischenko

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 5,  67–69


© Steklov Math. Inst. of RAS, 2025