RUS  ENG
Full version
PEOPLE

Volosivets Sergei Sergeevich

Publications in Math-Net.Ru

  1. Integrability and Boas type results for a generalized Fourier–Bessel transform

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 9,  3–15
  2. Integrability of series with respect to multiplicative systems and generalized derivatives

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3,  3–14
  3. Generalized Multiple Multiplicative Fourier Transform and Estimates of Integral Moduli of Continuity

    Mat. Zametki, 115:4 (2024),  578–588
  4. Estimates for the second Hankel–Clifford transform and Titchmarsh equivalence theorem

    Probl. Anal. Issues Anal., 13(31):2 (2024),  144–154
  5. Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform

    Mat. Zametki, 114:1 (2023),  68–80
  6. Weighted integrability results for first Hankel-Clifford transform

    Probl. Anal. Issues Anal., 12(30):2 (2023),  107–117
  7. Polynomial approximation with respect to multiplicative systems in the Morrey space

    Sibirsk. Mat. Zh., 64:1 (2023),  40–55
  8. Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 6,  13–25
  9. Weighted Integrability of Multiple Multiplicative Fourier Transforms

    Mat. Zametki, 111:3 (2022),  365–374
  10. Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces

    Probl. Anal. Issues Anal., 11(29):2 (2022),  106–118
  11. Generalized absolute convergence of Fourier series with respect to multiplicative systems of functions of generalized bounded fluctuation

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  78–90
  12. Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces

    Trudy Mat. Inst. Steklova, 319 (2022),  94–105
  13. Approximation properties of partial Fourier sums in the $p$-variation metric

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200 (2021),  29–35
  14. Fourier transform and continuity of functions of bounded $\Phi$-variation

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199 (2021),  43–49
  15. Criteria for a Function to Belong to the $p$-Variational Besov Space

    Mat. Zametki, 109:1 (2021),  27–35
  16. Modified modulus of smoothness and approximation in weighted Lorentz spaces by Borel and Euler means

    Probl. Anal. Issues Anal., 10(28):1 (2021),  87–100
  17. Ulyanov-type embedding theorems for functions on zero-dimensional locally compact groups

    Sibirsk. Mat. Zh., 62:1 (2021),  42–54
  18. Hausdorff operators of special kind in $BMO$-type spaces and Hölder–Lipschitz spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 12,  8–21
  19. Generalized Absolute Convergence of Single and Double Series in Multiplicative Systems

    Mat. Zametki, 107:2 (2020),  195–209
  20. Modified Hardy and Hardy–Littlewood fractional operators in Morrey–Herz spaces and their commutators in weighted spaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 171 (2019),  70–77
  21. Martingale inequalities in symmetric spaces with semimultiplicative weight

    Izv. Saratov Univ. Math. Mech. Inform., 19:2 (2019),  126–133
  22. Fractional modified Hardy and Hardy–Littlewood operators and their commutators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 9,  16–26
  23. Double cosine-sine series and Nikol'skii classes in uniform metric

    Probl. Anal. Issues Anal., 8(26):3 (2019),  187–203
  24. Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm

    Fundam. Prikl. Mat., 22:1 (2018),  111–126
  25. Generalized absolute convergence of series from Fourier coeficients by systems of Haar type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1,  10–20
  26. Embeddings of generalized bounded variation function spaces into spaces of functions with given majorant of average modulus of continuity

    Izv. Saratov Univ. Math. Mech. Inform., 17:3 (2017),  255–266
  27. Multiplicative convolutions of functions from Lorentz spaces and convergence of series from Fourier–Vilenkin coefficients

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 5,  32–44
  28. Series in Multiplicative Systems in Lorentz Spaces

    Mat. Zametki, 102:3 (2017),  339–354
  29. Approximation of functions and their conjugates in variable Lebesgue spaces

    Mat. Sb., 208:1 (2017),  48–64
  30. Approximation of Polynomials in the Haar System in Weighted Symmetric Spaces

    Mat. Zametki, 99:5 (2016),  649–657
  31. Sidon-type inequalities and strong approximation by Fourier sums in multiplicative systems

    Sibirsk. Mat. Zh., 57:3 (2016),  617–631
  32. Several questions of approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces

    Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015),  251–258
  33. Hardy–Goldberg operator and its conjugate one in Hardy spaces and $BMO(\mathbb T)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 2,  18–29
  34. Uniform Convergence and Integrability of Multiplicative Fourier Transforms

    Mat. Zametki, 98:1 (2015),  44–60
  35. Approximation by polynomials with respect to multiplicative systems in weighted $L^p$-spaces

    Sibirsk. Mat. Zh., 56:1 (2015),  82–93
  36. Modified Bessel ${\mathbf P}$-integrals and $\mathbf P$-derivatives and their properties

    Izv. RAN. Ser. Mat., 78:5 (2014),  27–52
  37. Embedding Theorems for $\mathbf{P}$-nary Hardy and $VMO$ Spaces

    Izv. Saratov Univ. Math. Mech. Inform., 14:4(2) (2014),  518–525
  38. Weighted integrability of sums of series with respect to multiplicative systems

    Izv. Saratov Univ. Math. Mech. Inform., 14:2 (2014),  129–136
  39. Weighted integrability of double series with respect to multiplicative systems

    Fundam. Prikl. Mat., 18:5 (2013),  69–87
  40. Identities of Titchmarsh Type for Generalized Hardy and Hardy–Littlewood Operators

    Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013),  28–33
  41. Hausdorff Operators on $p$-Adic Linear Spaces and Their Properties in Hardy, $BMO$, and Hölder Spaces

    Mat. Zametki, 93:3 (2013),  357–367
  42. Fourier transforms in generalized Lipschitz classes

    Trudy Mat. Inst. Steklova, 280 (2013),  126–137
  43. The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 8,  15–26
  44. The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications

    Mat. Sb., 203:5 (2012),  3–32
  45. Modified Hardy and Hardy–Littlewood operators and their behaviour in various spaces

    Izv. RAN. Ser. Mat., 75:1 (2011),  29–52
  46. On weighted analogs of Wiener's and Levy's theorems for Fourier–Vilenkin series

    Izv. Saratov Univ. Math. Mech. Inform., 11:3(1) (2011),  3–7
  47. Generalization of the Multiplicative Fourier Transform and Its Properties

    Mat. Zametki, 89:3 (2011),  323–330
  48. Weighted integrability of multiplicative Fourier transforms

    Trudy Mat. Inst. Steklova, 269 (2010),  71–81
  49. Absolute convergence of single and double Fourier series on multiplicative systems

    Izv. Saratov Univ. Math. Mech. Inform., 9:3 (2009),  7–14
  50. Applications of $\mathbf P$-adic generalized functions and approximations by a system of $\mathbf P$-adic translations of a function

    Sibirsk. Mat. Zh., 50:1 (2009),  3–18
  51. On convergence of Fourier–Vilenkin series in $L^p[0,1)$, $0<p\le1$

    Izv. Saratov Univ. Math. Mech. Inform., 8:3 (2008),  3–9
  52. Convergence of series of Fourier coefficients for multiplicative convolutions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 11,  27–39
  53. Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5,  4–13
  54. Hardy and Bellman transformations of series with respect to multiplicative systems

    Mat. Sb., 199:8 (2008),  3–28
  55. Multipliers of Convergence in Norm of Series with Respect to Multiplicative Systems

    Mat. Zametki, 82:4 (2007),  483–494
  56. The modified multiplicative integral and derivative of arbitrary order on the semiaxis

    Izv. RAN. Ser. Mat., 70:2 (2006),  3–24
  57. Refined theorems of approximation theory in the space of $p$-absolutely continuous functions

    Mat. Zametki, 80:5 (2006),  701–711
  58. Convergence of fourier series with respect to multiplicative systems and the $p$-fluctuation continuity modulus

    Sibirsk. Mat. Zh., 47:2 (2006),  241–258
  59. A modified $\mathbf P$-adic integral and a modified $\mathbf P$-adic derivative for functions defined on a half-axis

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 6,  28–39
  60. Specifications of direct and inverse approximation theorems for $p$-absolutely continuous functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5,  55–56
  61. Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber–Schauder system

    Mat. Zametki, 62:3 (1997),  363–371
  62. Polynomials of best approximation and relations between moduli of continuity in spaces of functions of bounded $p$-variation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 9,  21–26
  63. Asymptotic properties of one compact set of smooth functions in the space of functions of bounded $p$-variation

    Mat. Zametki, 57:2 (1995),  214–227
  64. Approximation of functions of bounded $p$-variation by means of polynomials of the Haar and Walsh systems

    Mat. Zametki, 53:6 (1993),  11–21
  65. On the $\varepsilon$-entropy of some sets of functions of bounded $p$-variation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2,  83–85
  66. On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 5,  81–84


© Steklov Math. Inst. of RAS, 2025