RUS  ENG
Full version
PEOPLE

Dubickas Artūras Kazevich

Publications in Math-Net.Ru

  1. On the least common multiple of several consecutive values of a polynomial

    Algebra i Analiz, 34:2 (2022),  231–239
  2. Cyclotomic quotients of two conjugates of an algebraic number

    Sibirsk. Mat. Zh., 62:3 (2021),  509–513
  3. On Newman polynomials without roots on the unit circle

    Chebyshevskii Sb., 20:1 (2019),  197–203
  4. On the Hurwitz Zeta Functions with Algebraic Irrational Parameter

    Mat. Zametki, 105:2 (2019),  179–186
  5. On distances in lattices from algebraic number fields

    Mosc. Math. J., 17:2 (2017),  239–268
  6. When should a polynomial's root nearest to a real number be real itself?

    Algebra i Analiz, 25:6 (2013),  37–49
  7. On the fractional parts of the natural powers of a fixed number

    Sibirsk. Mat. Zh., 47:5 (2006),  1071–1075
  8. Length of the Sum and Product of Algebraic Numbers

    Mat. Zametki, 77:6 (2005),  854–860
  9. Divisibility properties of certain recurrent sequences

    Zap. Nauchn. Sem. POMI, 322 (2005),  76–82
  10. Conjugate algebraic numbers close to a symmetric set

    Algebra i Analiz, 16:6 (2004),  123–127
  11. Certain Diophantine Properties of the Mahler Measure

    Mat. Zametki, 72:6 (2002),  828–833
  12. Polynomials with high multiplicity at unity and Tarry's problem

    Mat. Zametki, 65:6 (1999),  810–815
  13. On improving the approximation of $\pi\sqrt3$ by rational fractions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 6,  76–77
  14. A lower bound for the quantity $\Vert(3/2)^k\Vert$

    Uspekhi Mat. Nauk, 45:4(274) (1990),  153–154
  15. Approximation of some logarithms of rational numbers by rational fractions of special form

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 2,  69–71
  16. Approximation of $\pi/\sqrt3$ by rational fractions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 6,  73–76

  17. Some moments in the life of Antanas Laurinčikas: the search for universality

    Chebyshevskii Sb., 20:1 (2019),  6–45


© Steklov Math. Inst. of RAS, 2024