RUS  ENG
Full version
PEOPLE

Mnatsakanova Melita Nikolaevna

Publications in Math-Net.Ru

  1. Wightman axiomatic approach in noncommutative field theory

    TMF, 142:2 (2005),  403–416
  2. Jost–Lehmann–Dyson representation, analyticity in the angular variable, and upper bounds in noncommutative quantum field theory

    TMF, 142:2 (2005),  388–402
  3. Dispersion Relations for the Forward Elastic Scattering Amplitude in Noncommutative Quantum Field Theory

    TMF, 139:1 (2004),  3–11
  4. Commutation Relations in an Indefinite-Metric Space

    TMF, 135:3 (2003),  420–426
  5. High-Energy Relations Between Elastic Scattering Amplitudes of Particles and Antiparticles

    TMF, 132:2 (2002),  198–210
  6. Regular Representations of the Generalized Heisenberg Algebra

    TMF, 129:2 (2001),  219–226
  7. Regular representations of the $R$-deformed Heisenberg algebra

    TMF, 125:2 (2000),  272–281
  8. Algebra of $q$-deformed commutators in an indefinite metric space

    TMF, 113:3 (1997),  355–368
  9. Integral equalities for functions that satisfy dispersion relations

    TMF, 61:1 (1984),  85–91
  10. Rigorous upper bounds on integrals of the scattering amplitude

    TMF, 59:2 (1984),  233–239
  11. Rigorous bounds on the elastic scattering amplitude at finite energies

    TMF, 52:2 (1982),  199–212
  12. Pomeranchuk's theorem at asymptotic and finite energies

    TMF, 34:2 (1978),  153–157
  13. New possibilities of verifying analyticity

    TMF, 26:1 (1976),  137–140
  14. Lower bound for forward scattering amplitude

    TMF, 24:1 (1975),  141–144
  15. Integral representation of the $\pi$-meson electromagnetic radius

    TMF, 16:1 (1973),  66–69
  16. Integral relations between the real and imaginary parts of the forward scattering amplitude

    TMF, 14:2 (1973),  192–201
  17. Difference of the total cross sections and the ratio of the differential cross sections of high energy $\pi^\pm p$ forward scattering

    TMF, 13:3 (1972),  362–367
  18. Restriction of scattering amplitude growth at finite energies

    TMF, 10:1 (1972),  33–46


© Steklov Math. Inst. of RAS, 2024