RUS  ENG
Full version
PEOPLE

Toponogov Viktor Andreevich

Publications in Math-Net.Ru

  1. The Cheeger–Gromoll theorem for a class of open Riemannian manifolds of nonnegative curvature in the integral sense

    Sibirsk. Mat. Zh., 38:1 (1997),  208–216
  2. A uniqueness theorem for convex surfaces with no umbilical points and interrelated principal curvatures

    Sibirsk. Mat. Zh., 37:5 (1996),  1176–1180
  3. On conditions for existence of periodic solutions to a system of differential equations given integral characteristics

    Sibirsk. Mat. Zh., 36:5 (1995),  1157–1166
  4. On conditions for existence of umbilical points on a convex surface

    Sibirsk. Mat. Zh., 36:4 (1995),  903–910
  5. Cylinder theorems for convex hypersurfaces

    Sibirsk. Mat. Zh., 35:4 (1994),  915–918
  6. A uniqueness theorem for a surface with principal curvatures connected by the relation $(1-k_1d)(1-k_2d)=-1$

    Sibirsk. Mat. Zh., 34:4 (1993),  197–199
  7. Surfaces of generalized constant width

    Sibirsk. Mat. Zh., 34:3 (1993),  179–189
  8. A condition sufficient for nonexistence of a cycle in a two-dimensional system quadratic in one of the variables

    Sibirsk. Mat. Zh., 34:2 (1993),  170–172
  9. Open manifolds of nonnegative curvature

    Itogi Nauki i Tekhniki. Ser. Probl. Geom., 21 (1989),  67–91
  10. A theorem on the congruence of the angles of a triangle for a class of Riemannian manifolds

    Trudy Inst. Mat. Sib. Otd. AN SSSR, 9 (1987),  16–25
  11. Open manifolds of nonnegative Ricci curvature with rapidly increasing volume

    Sibirsk. Mat. Zh., 26:4 (1985),  191–194
  12. Extremal case of a theorem on the congruence of angles of a triangle

    Sibirsk. Mat. Zh., 26:1 (1985),  206–209
  13. Riemannian spaces with diameter equal to $\pi$

    Sibirsk. Mat. Zh., 16:1 (1975),  124–131
  14. Extremal theorems for Riemannian spaces with curvature bounded from above. I

    Sibirsk. Mat. Zh., 15:6 (1974),  1348–1371
  15. On three-dimensional Riemannian spaces with curvature bounded above

    Mat. Zametki, 13:6 (1973),  881–887
  16. A certain characteristic property of a four-dimensional symmetric space of rank 1

    Sibirsk. Mat. Zh., 13:4 (1972),  884–902
  17. Theorems on minimizing paths in noncompact Riemannian spaces of positive curvature

    Dokl. Akad. Nauk SSSR, 191:3 (1970),  537–539
  18. Extremal theorems for Riemannian spaces with curvature bounded from above

    Dokl. Akad. Nauk SSSR, 184:2 (1969),  300–302
  19. An isoperimetric inequality for surfaces whose Gaussian curvature is bounded from above

    Sibirsk. Mat. Zh., 10:1 (1969),  144–157
  20. Some extremal theorems of Riemannian geometry

    Sibirsk. Mat. Zh., 8:5 (1967),  1079–1103
  21. A bound for the length of a closed geodesic in a compact Riemannian space of positive curvature

    Dokl. Akad. Nauk SSSR, 154:5 (1964),  1047–1049
  22. The metric structure of Riemannian spaces of non-negative curvature containing straight lines

    Sibirsk. Mat. Zh., 5:6 (1964),  1358–1369
  23. A bound for the length of a convex curve on a two-dimensional surface

    Sibirsk. Mat. Zh., 4:5 (1963),  1189–1193
  24. Relation between curvature and topological structure for Riemannean spaces of an even number of dimensions

    Dokl. Akad. Nauk SSSR, 133:5 (1960),  1031–1033
  25. Riemann spaces with curvature bounded below

    Uspekhi Mat. Nauk, 14:1(85) (1959),  87–130
  26. Riemannian spaces having their curvature bounded below by a positive number

    Dokl. Akad. Nauk SSSR, 120:4 (1958),  719–721
  27. On convexity of Riemannian spaces of-positive curvature

    Dokl. Akad. Nauk SSSR, 115:4 (1957),  674–676

  28. Roman Nikolaevich Shcherbakov (obituary)

    Uspekhi Mat. Nauk, 44:1(265) (1989),  177–178
  29. Yurii Grigor'evich Reshetnyak (on the occasion of his sixtieth birthday)

    Sibirsk. Mat. Zh., 30:5 (1989),  3–8
  30. Academician Aleksandr Danilovich Aleksandrov (on the occasion of his seventy-fifth birthday)

    Sibirsk. Mat. Zh., 28:4 (1987),  3–8
  31. Soviet-Hungarian Symposium on Differential Equations, Theory of Approximation, and Topology

    Uspekhi Mat. Nauk, 37:4(226) (1982),  221–223


© Steklov Math. Inst. of RAS, 2024