RUS  ENG
Full version
PEOPLE

Avakov Evgeny Rachievich

Publications in Math-Net.Ru

  1. Controllability of an approximately defined control system

    Mat. Sb., 215:4 (2024),  3–29
  2. On the Continuous Dependence of a Solution of a Differential Equation on the Right-Hand Side and Boundary Conditions

    Mat. Zametki, 114:1 (2023),  3–17
  3. Controllability and Second-Order Necessary Conditions for Local Infimum Trajectories in Optimal Control

    Trudy Mat. Inst. Steklova, 321 (2023),  7–30
  4. Controllability of difference approximation for a control system with continuous time

    Mat. Sb., 213:12 (2022),  3–30
  5. A Note on the Classical Implicit Function Theorem

    Mat. Zametki, 110:6 (2021),  911–915
  6. Implicit Function. Controllability and Perturbation of Optimal Control Problems

    Mat. Zametki, 109:4 (2021),  483–499
  7. Local controllability and optimality

    Mat. Sb., 212:7 (2021),  3–38
  8. General Implicit Function Theorem for Close Mappings

    Trudy Mat. Inst. Steklova, 315 (2021),  7–18
  9. Gamkrelidze Convexification and Bogolyubov's Theorem

    Mat. Zametki, 107:4 (2020),  483–497
  10. Local infimum and a family of maximum principles in optimal control

    Mat. Sb., 211:6 (2020),  3–39
  11. Controllability and second-order necessary conditions for optimality

    Mat. Sb., 210:1 (2019),  3–26
  12. Generalized Needles and Second-Order Conditions in Optimal Control

    Trudy Mat. Inst. Steklova, 304 (2019),  15–31
  13. An Implicit Function Theorem for Inclusions Defined by Close Mappings

    Mat. Zametki, 103:4 (2018),  483–489
  14. Relaxation and controllability in optimal control problems

    Mat. Sb., 208:5 (2017),  3–37
  15. Irregular trajectories in vakonomic mechanical systems

    Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016),  1702–1710
  16. Stability theorem and extremum conditions for abnormal problems

    Trudy Mat. Inst. Steklova, 291 (2015),  10–29
  17. Mix of controls and the Pontryagin maximum principle

    Fundam. Prikl. Mat., 19:4 (2014),  5–20
  18. An investigation of smooth maps in a neighbourhood of an abnormal point

    Izv. RAN. Ser. Mat., 78:2 (2014),  3–42
  19. Lagrange's principle in extremum problems with constraints

    Uspekhi Mat. Nauk, 68:3(411) (2013),  5–38
  20. An Implicit-Function Theorem for Inclusions

    Mat. Zametki, 91:6 (2012),  813–818
  21. Exact penalties for optimization problems with 2-regular equality constraints

    Zh. Vychisl. Mat. Mat. Fiz., 48:3 (2008),  365–372
  22. Necessary Conditions for an Extremum in a Mathematical Programming Problem

    Trudy Mat. Inst. Steklova, 256 (2007),  6–30
  23. Inverse function theorem and conditions of extremum for abnormal problems with non-closed range

    Mat. Sb., 196:9 (2005),  3–22
  24. On convergence rate estimates for power penalty methods

    Zh. Vychisl. Mat. Mat. Fiz., 44:10 (2004),  1770–1781
  25. First-order necessary conditions for abnormal problems in the calculus of variations

    Differ. Uravn., 27:5 (1991),  739–745
  26. The level set of a smooth mapping in a neighborhood of a singular point, and zeros of a quadratic mapping

    Mat. Sb., 182:8 (1991),  1091–1104
  27. Theorems on estimates in the neighborhood of a singular point of a mapping

    Mat. Zametki, 47:5 (1990),  3–13
  28. Necessary extremum conditions for smooth anormal problems with equality- and inequality-type constraints

    Mat. Zametki, 45:6 (1989),  3–11
  29. The maximum principle for abnormal optimal control problems

    Dokl. Akad. Nauk SSSR, 298:6 (1988),  1289–1292
  30. Necessary conditions for a minimum for nonregular problems in Banach spaces. The maximum principle for abnormal optimal control problems

    Trudy Mat. Inst. Steklov., 185 (1988),  3–29
  31. Conditions for an extremum for smooth problems with constraints of equality type

    Zh. Vychisl. Mat. Mat. Fiz., 25:5 (1985),  680–693
  32. Regularization conditions for an approximating family of maximin problems with respect to associated sets

    Dokl. Akad. Nauk SSSR, 263:2 (1982),  265–269
  33. On conditions for approximation of a lexicographical problem

    Zh. Vychisl. Mat. Mat. Fiz., 20:4 (1980),  889–900
  34. Approximation conditions for max-min problems with connected sets

    Zh. Vychisl. Mat. Mat. Fiz., 18:3 (1978),  603–613

  35. Georgy Georgievich Magaril-Il'yaev (on his 80th anniversary)

    Vladikavkaz. Mat. Zh., 26:2 (2024),  133–136
  36. Osipenko Konstantin Yur'evich (on his 60th birthday)

    Vladikavkaz. Mat. Zh., 12:1 (2010),  68–70


© Steklov Math. Inst. of RAS, 2024