RUS  ENG
Full version
PEOPLE

Chebotarev Alexander Yur'evich

Publications in Math-Net.Ru

  1. Inverse problem with integral overdetermination for a semilinear parabolic equation

    Dal'nevost. Mat. Zh., 24:2 (2024),  280–285
  2. Analysis of semilinear elliptic boundary value problem and its applications

    Dal'nevost. Mat. Zh., 24:2 (2024),  259–267
  3. Extremal problems for quasi-stationary equations of complex heat transfer with Fresnel coupling conditions

    Dal'nevost. Mat. Zh., 24:1 (2024),  133–140
  4. Inverse problem for quasi-stationary complex heat transfer equations with Fresnel matching conditions

    Zh. Vychisl. Mat. Mat. Fiz., 64:10 (2024),  1881–1889
  5. Optimal multiplicative control of a semilinear parabolic equation

    Dal'nevost. Mat. Zh., 23:2 (2023),  270–277
  6. Analysis and numerical simulation of the initial-boundary value problem for quasilinear equations of complex heat transfer

    Sib. Zh. Ind. Mat., 26:4 (2023),  180–193
  7. Optimal control of quasi-stationary equations of complex heat transfer with reflection and refraction conditions

    Zh. Vychisl. Mat. Mat. Fiz., 63:11 (2023),  1829–1838
  8. The problem of complex heat transfer with Cauchy-type conditions on a part of the boundary

    Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023),  856–863
  9. Inhomogeneous problem for quasi-stationary equations of complex heat transfer with reflection and refraction conditions

    Zh. Vychisl. Mat. Mat. Fiz., 63:3 (2023),  465–473
  10. Penalty method to solve an optimal control problem for a quasilinear parabolic equation

    Dal'nevost. Mat. Zh., 22:2 (2022),  158–163
  11. Initial-boundary value problem for the equations of radiative heat transfer with Fresnel conjugation conditions

    Dal'nevost. Mat. Zh., 22:1 (2022),  100–106
  12. Optimal control problems for complex heat transfer equations with Fresnel matching conditions

    Zh. Vychisl. Mat. Mat. Fiz., 62:3 (2022),  381–390
  13. Analysis of an optimization method for solving the problem of complex heat transfer with Cauchy boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 62:1 (2022),  36–44
  14. Optimal control of the radiation heat exchange equations for multi-component media

    Dal'nevost. Mat. Zh., 21:1 (2021),  113–121
  15. Inverse problem for equations of complex heat transfer with Fresnel matching conditions

    Zh. Vychisl. Mat. Mat. Fiz., 61:2 (2021),  303–311
  16. An algorithm for solving the boundary value problem of radiation heat transfer without boundary conditions for radiation intensity

    Dal'nevost. Mat. Zh., 20:1 (2020),  114–122
  17. Inhomogeneous boundary-value problem of radiation heat transfer for a multicomponent medium

    Dal'nevost. Mat. Zh., 20:1 (2020),  108–113
  18. Optimal control of endovenous laser ablation

    Optics and Spectroscopy, 128:9 (2020),  1396–1404
  19. The problem of radiative heat transfer without boundary conditions for the intensity of radiation

    Dal'nevost. Mat. Zh., 19:1 (2019),  119–124
  20. Finding the source intensity in the radiative heat transfer model by integral overdetermination

    Dal'nevost. Mat. Zh., 19:1 (2019),  88–95
  21. Inverse problem for equations of complex heat transfer

    Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019),  1420–1430
  22. Stationary problem of radiative heat transfer with Cauchy boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 59:7 (2019),  1258–1263
  23. Boundary inverse problem for conductive-radiative equations of heat transfer

    Dal'nevost. Mat. Zh., 18:1 (2018),  75–84
  24. Stability of stationary solutions of the radiative heat transfer equations

    Zh. Vychisl. Mat. Mat. Fiz., 58:9 (2018),  1472–1477
  25. Unique solvability of the subdifferential boundary value problem for the complex heat transfer equations

    Dal'nevost. Mat. Zh., 16:2 (2016),  229–236
  26. Control of complex heat transfer on producing extremal fields

    Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016),  1725–1732
  27. Nonlocal unique solvability of a steady-state problem of complex heat transfer

    Zh. Vychisl. Mat. Mat. Fiz., 56:5 (2016),  816–823
  28. Nonstationary problem of free convection with radiative heat transfer

    Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016),  275–282
  29. A nonhomogeneous nonstationary complex heat transfer problem

    Sib. Èlektron. Mat. Izv., 12 (2015),  562–576
  30. The stability of steady-state solutions of the diffusion complex heat transfer model

    Dal'nevost. Mat. Zh., 14:1 (2014),  18–32
  31. A nonstationary problem of complex heat transfer

    Zh. Vychisl. Mat. Mat. Fiz., 54:11 (2014),  1806–1816
  32. Steady-state problem of complex heat transfer

    Zh. Vychisl. Mat. Mat. Fiz., 54:4 (2014),  711–719
  33. Inverse problems for stationary Navier–Stokes systems

    Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014),  519–528
  34. Stabilization of equilibrium MHD configurations by external currents

    Zh. Vychisl. Mat. Mat. Fiz., 52:12 (2012),  2238–2246
  35. Stabilization of unstable equilibrium configurations in magnetohydrodynamics

    Zh. Vychisl. Mat. Mat. Fiz., 52:2 (2012),  312–318
  36. Determination of the right-hand side of the Navier–Stokes system of equations and inverse problems for the thermal convection equations

    Zh. Vychisl. Mat. Mat. Fiz., 51:12 (2011),  2279–2287
  37. Finite-dimensional stabilization with given rate for the Navier – Stokes systems

    Dal'nevost. Mat. Zh., 10:2 (2010),  199–204
  38. The stable synthesis of optimal control in the extremum problem for elliptic equation

    Dal'nevost. Mat. Zh., 9:1-2 (2009),  204–208
  39. Control of magnetohydrodynamic flow in the formation of a magnetic field with a prescribed configuration

    Zh. Vychisl. Mat. Mat. Fiz., 49:11 (2009),  2001–2009
  40. Impulse control of temperature in a free convection model

    Zh. Vychisl. Mat. Mat. Fiz., 49:4 (2009),  616–623
  41. Optimal control asymptotics of a magnetohydrodynamic flow

    Zh. Vychisl. Mat. Mat. Fiz., 49:3 (2009),  482–489
  42. Variational inequalities, boundary – value problems and optimal control for the Navier – Stokes equations

    Dal'nevost. Mat. Zh., 8:1 (2008),  121–140
  43. Optimal control of MHD-flow deceleration

    Prikl. Mekh. Tekh. Fiz., 49:5 (2008),  3–10
  44. Variational Inequalities in Magneto-Hydrodynamics

    Mat. Zametki, 82:1 (2007),  135–149
  45. Optimal control in nonstationary problems of magnetohydrodynamics

    Sib. Zh. Ind. Mat., 10:3 (2007),  138–148
  46. The solvability of stationary boundary problem for model of the granular medium

    Dal'nevost. Mat. Zh., 5:2 (2004),  178–183
  47. Modeling of steady flows in a channel by Navier–Stokes variational inequalities

    Prikl. Mekh. Tekh. Fiz., 44:6 (2003),  123–129
  48. Letter to the editors

    Sibirsk. Mat. Zh., 43:2 (2002),  482
  49. Solvability of a Mixed Boundary Value Problem for the Stationary Navier–Stokes Equations

    Differ. Uravn., 37:5 (2001),  689–695
  50. Variational Inequalities for Navier–Stokes Type Operators and One-Sided Problems for Equations of Viscous Heat-Conducting Fluids

    Mat. Zametki, 70:2 (2001),  296–307
  51. Variational inequalities and inverse subdifferential problems for the Maxwell equations in a harmonic mode

    Differ. Uravn., 36:6 (2000),  747–753
  52. Stationary variational inequalities in a model of an inhomogeneous incompressible fluid

    Sibirsk. Mat. Zh., 38:5 (1997),  1184–1193
  53. Inverse boundary value problems for stationary Navier–Stokes equations with subdifferential overdetermination

    Differ. Uravn., 31:4 (1995),  677–683
  54. Inverse problem for nonlinear evolution equations of Navier–Stokes type

    Differ. Uravn., 31:3 (1995),  517–524
  55. Normal solutions to boundary value problems for stationary systems of the Navier–Stokes type

    Sibirsk. Mat. Zh., 36:4 (1995),  934–942
  56. Maximum principle in the boundary control problem for flow of a viscous fluid

    Sibirsk. Mat. Zh., 34:6 (1993),  189–197
  57. Extremal boundary value problems of the dynamics of a viscous incompressible fluid

    Sibirsk. Mat. Zh., 34:5 (1993),  202–213
  58. Subdifferential boundary value problems for stationary Navier–Stokes equations

    Differ. Uravn., 28:8 (1992),  1443–1450
  59. Inverse problems of acoustic potential

    Zh. Vychisl. Mat. Mat. Fiz., 25:8 (1985),  1189–1199


© Steklov Math. Inst. of RAS, 2025