RUS  ENG
Full version
PEOPLE

Kan Igor' Davidovich

Publications in Math-Net.Ru

  1. Around Zaremba's conjecture

    Mat. Zametki, 117:5 (2025),  680–686
  2. Reachability of inequalities from Lame's theorem

    Dal'nevost. Mat. Zh., 24:1 (2024),  45–54
  3. Modular Generalization of the Bourgain–Kontorovich Theorem

    Mat. Zametki, 114:5 (2023),  739–752
  4. System of Inequalities in Continued Fractions from Finite Alphabets

    Mat. Zametki, 113:2 (2023),  197–206
  5. Strengthening of the Burgein–Kontorovich theorem on small values of Hausdorff dimension

    Funktsional. Anal. i Prilozhen., 56:1 (2022),  66–80
  6. Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets

    Mat. Zametki, 112:3 (2022),  412–425
  7. The derivative of the Minkowski function

    Izv. RAN. Ser. Mat., 85:4 (2021),  5–52
  8. Inversions of Hölder's Inequality

    Mat. Zametki, 110:5 (2021),  704–714
  9. Stationary points of the Minkowski function

    Mat. Sb., 212:10 (2021),  3–15
  10. A strengthening of the Bourgain-Kontorovich method: three new theorems

    Mat. Sb., 212:7 (2021),  39–83
  11. A strengthening the one of a theorem of Bourgain – Kontorovich

    Dal'nevost. Mat. Zh., 20:2 (2020),  164–190
  12. Differentiability of the Minkowski function $?(x)$. II

    Izv. RAN. Ser. Mat., 83:5 (2019),  53–87
  13. Differentiability of the Minkowski $?(x)$-function. III

    Mat. Sb., 210:8 (2019),  87–119
  14. Is Zaremba's conjecture true?

    Mat. Sb., 210:3 (2019),  75–130
  15. Linear Congruences in Continued Fractions on Finite Alphabets

    Mat. Zametki, 103:6 (2018),  853–862
  16. A strengthening of a theorem of Bourgain and Kontorovich. V

    Trudy Mat. Inst. Steklova, 296 (2017),  133–139
  17. A strengthening of a theorem of Bourgain and Kontorovich. IV

    Izv. RAN. Ser. Mat., 80:6 (2016),  103–126
  18. Inversion of the Cauchy–Bunyakovskii–Schwarz Inequality

    Mat. Zametki, 99:3 (2016),  361–365
  19. A strengthening of a theorem of Bourgain and Kontorovich. III

    Izv. RAN. Ser. Mat., 79:2 (2015),  77–100
  20. A strengthening of a theorem of Bourgain and Kontorovich

    Izv. RAN. Ser. Mat., 78:2 (2014),  87–144
  21. A strengthening of a theorem of Bourgain–Kontorovich II

    Moscow J. Combin. Number Theory, 4:1 (2014),  78–117
  22. Quantitative generalizations of Niederreiter's results on continued fractions

    Chebyshevskii Sb., 12:1 (2011),  100–119
  23. Methods for estimating of continuants

    Fundam. Prikl. Mat., 16:6 (2010),  95–108
  24. The Frobenius Problem for Classes of Polynomial Solvability

    Mat. Zametki, 70:6 (2001),  845–853
  25. Refining of the comparison rule for continuants

    Diskr. Mat., 12:3 (2000),  72–75
  26. Representation of numbers by linear forms

    Mat. Zametki, 68:2 (2000),  210–216
  27. On a problem of Frobenius

    Fundam. Prikl. Mat., 3:3 (1997),  821–835
  28. Frobenius problem for three arguments

    Mat. Zametki, 62:4 (1997),  626–629
  29. On an embedding theorem for Möbius functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 3,  82–84
  30. Möbius functions of the union of partial orders

    Diskr. Mat., 3:2 (1991),  121–127


© Steklov Math. Inst. of RAS, 2025