|
|
Publications in Math-Net.Ru
-
Reachability of inequalities from Lame's theorem
Dal'nevost. Mat. Zh., 24:1 (2024), 45–54
-
Modular Generalization of the Bourgain–Kontorovich Theorem
Mat. Zametki, 114:5 (2023), 739–752
-
System of Inequalities in Continued Fractions from Finite Alphabets
Mat. Zametki, 113:2 (2023), 197–206
-
Strengthening of the Burgein–Kontorovich theorem on small values of Hausdorff dimension
Funktsional. Anal. i Prilozhen., 56:1 (2022), 66–80
-
Linear Inhomogeneous Congruences in Continued Fractions on Finite Alphabets
Mat. Zametki, 112:3 (2022), 412–425
-
The derivative of the Minkowski function
Izv. RAN. Ser. Mat., 85:4 (2021), 5–52
-
Inversions of Hölder's Inequality
Mat. Zametki, 110:5 (2021), 704–714
-
Stationary points of the Minkowski function
Mat. Sb., 212:10 (2021), 3–15
-
A strengthening of the Bourgain-Kontorovich method: three new theorems
Mat. Sb., 212:7 (2021), 39–83
-
A strengthening the one of a theorem of Bourgain – Kontorovich
Dal'nevost. Mat. Zh., 20:2 (2020), 164–190
-
Differentiability of the Minkowski function $?(x)$. II
Izv. RAN. Ser. Mat., 83:5 (2019), 53–87
-
Differentiability of the Minkowski $?(x)$-function. III
Mat. Sb., 210:8 (2019), 87–119
-
Is Zaremba's conjecture true?
Mat. Sb., 210:3 (2019), 75–130
-
Linear Congruences in Continued Fractions on Finite Alphabets
Mat. Zametki, 103:6 (2018), 853–862
-
A strengthening of a theorem of Bourgain and Kontorovich. V
Trudy Mat. Inst. Steklova, 296 (2017), 133–139
-
A strengthening of a theorem of Bourgain and Kontorovich. IV
Izv. RAN. Ser. Mat., 80:6 (2016), 103–126
-
Inversion of the Cauchy–Bunyakovskii–Schwarz Inequality
Mat. Zametki, 99:3 (2016), 361–365
-
A strengthening of a theorem of Bourgain and Kontorovich. III
Izv. RAN. Ser. Mat., 79:2 (2015), 77–100
-
A strengthening of a theorem of Bourgain and Kontorovich
Izv. RAN. Ser. Mat., 78:2 (2014), 87–144
-
A strengthening of a theorem of Bourgain–Kontorovich II
Moscow J. Combin. Number Theory, 4:1 (2014), 78–117
-
Quantitative generalizations of Niederreiter's results on continued fractions
Chebyshevskii Sb., 12:1 (2011), 100–119
-
Methods for estimating of continuants
Fundam. Prikl. Mat., 16:6 (2010), 95–108
-
The Frobenius Problem for Classes of Polynomial Solvability
Mat. Zametki, 70:6 (2001), 845–853
-
Refining of the comparison rule for continuants
Diskr. Mat., 12:3 (2000), 72–75
-
Representation of numbers by linear forms
Mat. Zametki, 68:2 (2000), 210–216
-
On a problem of Frobenius
Fundam. Prikl. Mat., 3:3 (1997), 821–835
-
Frobenius problem for three arguments
Mat. Zametki, 62:4 (1997), 626–629
-
On an embedding theorem for Möbius functions
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 3, 82–84
-
Möbius functions of the union of partial orders
Diskr. Mat., 3:2 (1991), 121–127
© , 2024