| 
	
        
	
                        
	 | 
	
	
	
	
 
	
  
	
	
        
	  
			Publications in Math-Net.Ru
			
				- 
				Method of S. B. Stechkin and V. T. Gavrilyuk and its application
Trudy Inst. Mat. i Mekh. UrO RAN, 31:3 (2025),  233–249	 
					- 
				Estimate of the convergence rate in the Riemann localization principle for trigonometric Fourier series of continuous functions
Mat. Zametki, 116:2 (2024),  290–305	 
					- 
				Estimate for the Rate of Uniform Convergence of the Fourier Series of a Continuous Periodic Function of Bounded $p$-Variation
Mat. Zametki, 115:2 (2024),  286–297	 
					- 
				An algorithm for finding the exact value of the argument for the modulus of continuity in estimate of approximation of a continuous periodic function by a partial sum of its Fourier series
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 4,  13–20	 
					- 
				Refinement of the Estimate for the Rate of Uniform Convergence
of the Fourier Series of a Continuous Periodic Function of Bounded Variation
Mat. Zametki, 113:4 (2023),  544–559	 
					- 
				Estimate for the least positive root of the harmonic function in a circle decomposed into sine series
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 3,  15–23	 
					- 
				The convergence condition for improper short integrals in terms of Newton polytopes
Chebyshevskii Sb., 22:1 (2021),  328–339	 
					- 
				Asymptotics of Feynman integrals in the one-dimensional case
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 4,  46–50	 
					- 
				Conditions on Determining Functionals for Subsets of Sobolev Space
Mat. Zametki, 86:6 (2009),  892–902	 
					- 
				A class of determining functionals for quasilinear elliptic problems
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 1,  11–15	 
					- 
				Approximation by step functions of functions belonging to Sobolev spaces
and uniqueness of solutions of differential equations of the form $u''=F(x,u,u')$
Izv. RAN. Ser. Mat., 71:1 (2007),  155–186	 
					- 
				Existence and equivalence of generalized orthosimilar systems
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 3,  10–15	 
					- 
				On some maximal operators, connected with the operation of convolution
Fundam. Prikl. Mat., 6:2 (2000),  565–581	 
					
			 
				
	
	
	
	© , 2025