RUS  ENG
Full version
PEOPLE

Chizhonkov Evgenii Vladimirovich

Publications in Math-Net.Ru

  1. Optimization of calculations in modeling the breaking of plasma oscillations

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 8,  81–93
  2. On errors in the PIC-method when modeling Langmuir oscillations

    Num. Meth. Prog., 25:1 (2024),  47–63
  3. Numerical simulation of oscillations in a cold but viscous plasma

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 4,  32–41
  4. On numerical simulation of traveling Langmuir waves in warm plasma

    Matem. Mod., 35:11 (2023),  21–34
  5. On the numerical solution of one extended hyperbolic system

    Num. Meth. Prog., 24:2 (2023),  213–230
  6. Rusanov’s third-order accurate scheme for modeling plasma oscillations

    Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023),  864–878
  7. On the stabilization of nonlinear cylindrical oscillations in a plasma with a current

    Matem. Mod., 34:12 (2022),  43–58
  8. Simulation of a cylindrical slow extraordinary wave in cold magnetoactive plasma

    Zh. Vychisl. Mat. Mat. Fiz., 62:5 (2022),  872–888
  9. On breaking of a slow extraordinary wave in a cold magnetoactive plasma

    Matem. Mod., 33:6 (2021),  3–16
  10. Analytical and numerical solutions of one-dimensional cold plasma equations

    Zh. Vychisl. Mat. Mat. Fiz., 61:9 (2021),  1508–1527
  11. On the existence of a global solution of a hyperbolic problem

    Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020),  97–100
  12. Numerical simulation of a slow extraordinary wave in magnetoactive plasma

    Num. Meth. Prog., 21:4 (2020),  420–439
  13. On second-order accuracy schemes for modeling of plasma oscillations

    Num. Meth. Prog., 21:1 (2020),  115–128
  14. Application of the energy conservation law in the cold plasma model

    Zh. Vychisl. Mat. Mat. Fiz., 60:3 (2020),  503–519
  15. The effect of electron-ion collisions on the breaking of cylindrical plasma oscillations

    Matem. Mod., 30:10 (2018),  86–106
  16. Numerical modeling of plasma oscillations with consideration of electron thermal motion

    Num. Meth. Prog., 19:2 (2018),  194–206
  17. Artificial boundary conditions for numerical modeling of electron oscillations in plasma

    Num. Meth. Prog., 18:1 (2017),  65–79
  18. Breaking of two-dimensional relativistic electron oscillations under small deviations from axial symmetry

    Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017),  1844–1859
  19. A difference scheme for plasma wakefield simulation

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 1,  44–48
  20. The effect of ions dynamics on the breaking of plane electron oscillations

    Matem. Mod., 27:12 (2015),  3–19
  21. Relativistic breaking effect of electron oscillations in a plasma slab

    Num. Meth. Prog., 15:3 (2014),  537–548
  22. Spatial modeling of breaking effects in nonlinear plasma oscillations

    Num. Meth. Prog., 14:3 (2013),  295–305
  23. A finite-difference scheme for computing axisymmetric plasma oscillations

    Num. Meth. Prog., 13:1 (2012),  1–13
  24. Iteration in a subspace for solving matrix games

    Zh. Vychisl. Mat. Mat. Fiz., 52:9 (2012),  1601–1613
  25. On the method of fictitious unknowns for the numerical solution of matrix games

    Num. Meth. Prog., 12:3 (2011),  338–347
  26. To the question of large-amplitude electron oscillations in a plasma slab

    Zh. Vychisl. Mat. Mat. Fiz., 51:3 (2011),  456–469
  27. Numerical modeling of axial solutions to some nonlinear problems

    Num. Meth. Prog., 11:3 (2010),  215–227
  28. Iterative solution of matrix games by the methods of grid variational inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010),  1367–1380
  29. A multi-level method for solving large-scale matrix games

    Num. Meth. Prog., 10:3 (2009),  327–339
  30. Numerical solution of some unstable problem

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 5,  50–53
  31. Numerical solution to a stokes interface problem

    Zh. Vychisl. Mat. Mat. Fiz., 49:1 (2009),  111–122
  32. On modeling of nonrelativistic cylindrical oscillations in plasma

    Num. Meth. Prog., 9:1 (2008),  58–65
  33. On two methods of approximate projection onto a stable manifold

    Num. Meth. Prog., 8:2 (2007),  177–182
  34. Numerical modeling of dynamics of 3D nonlinear wakefields in hydrodynamic approach

    Num. Meth. Prog., 7:1 (2006),  17–22
  35. On projection operators for numerical stabilization

    Num. Meth. Prog., 5:1 (2004),  161–169
  36. Solution of irregular saddle point problems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 1,  17–20
  37. On the preconditioning of saddle problems by means of saddle operators

    Zh. Vychisl. Mat. Mat. Fiz., 44:9 (2004),  1523–1533
  38. On the solution of saddle problems by methods with model saddle operators on the upper layer

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 8,  19–27
  39. Improving the convergence of the Lanczos method in solving algebraic saddle point problems

    Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002),  504–513
  40. On generalized relaxation method for linear saddle point problems

    Matem. Mod., 13:12 (2001),  107–114
  41. On solving an algebraic system of Stokes type under block diagonal preconditioning

    Zh. Vychisl. Mat. Mat. Fiz., 41:4 (2001),  549–557
  42. On the best constant in the inf-sup condition for elongated rectangular domains

    Mat. Zametki, 67:3 (2000),  387–396
  43. On the Arrow–Hurwicz algorithm with variable iterative parameters

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 5,  65–72
  44. Some results on the convergence of the Arrow–Hurwicz algorithm for Stokes-type algebraic systems

    Zh. Vychisl. Mat. Mat. Fiz., 39:3 (1999),  523–533
  45. Numerical simulation of the thermal self-focusing process in plazma

    Fundam. Prikl. Mat., 2:3 (1996),  789–801
  46. On the convergence of the artificial compressibility method

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 2,  13–20
  47. On some finite-difference approximations of Stokes problem

    Fundam. Prikl. Mat., 1:3 (1995),  573–580
  48. Numerical modelling of dynamic wave beam self-focusing in plasmas

    Matem. Mod., 7:9 (1995),  65–71
  49. On the optimization of algorithms for solving the Stokes problem

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 6,  93–96
  50. Methods for the simultaneous solution of the equations of gas dynamics and the kinetics of multiply-charged plasma

    Zh. Vychisl. Mat. Mat. Fiz., 30:9 (1990),  1381–1393
  51. A system of equations of magnetohydrodynamics type

    Dokl. Akad. Nauk SSSR, 278:5 (1984),  1074–1077


© Steklov Math. Inst. of RAS, 2024