|
|
Publications in Math-Net.Ru
-
Optimization of calculations in modeling the breaking of plasma oscillations
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 8, 81–93
-
On errors in the PIC-method when modeling Langmuir oscillations
Num. Meth. Prog., 25:1 (2024), 47–63
-
Numerical simulation of oscillations in a cold but viscous plasma
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 4, 32–41
-
On numerical simulation of traveling Langmuir waves in warm plasma
Matem. Mod., 35:11 (2023), 21–34
-
On the numerical solution of one extended hyperbolic system
Num. Meth. Prog., 24:2 (2023), 213–230
-
Rusanov’s third-order accurate scheme for modeling plasma oscillations
Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023), 864–878
-
On the stabilization of nonlinear cylindrical oscillations in a plasma with a current
Matem. Mod., 34:12 (2022), 43–58
-
Simulation of a cylindrical slow extraordinary wave in cold magnetoactive plasma
Zh. Vychisl. Mat. Mat. Fiz., 62:5 (2022), 872–888
-
On breaking of a slow extraordinary wave in a cold magnetoactive plasma
Matem. Mod., 33:6 (2021), 3–16
-
Analytical and numerical solutions of one-dimensional cold plasma equations
Zh. Vychisl. Mat. Mat. Fiz., 61:9 (2021), 1508–1527
-
On the existence of a global solution of a hyperbolic problem
Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 97–100
-
Numerical simulation of a slow extraordinary wave in magnetoactive plasma
Num. Meth. Prog., 21:4 (2020), 420–439
-
On second-order accuracy schemes for modeling of plasma oscillations
Num. Meth. Prog., 21:1 (2020), 115–128
-
Application of the energy conservation law in the cold plasma model
Zh. Vychisl. Mat. Mat. Fiz., 60:3 (2020), 503–519
-
The effect of electron-ion collisions on the breaking of cylindrical plasma oscillations
Matem. Mod., 30:10 (2018), 86–106
-
Numerical modeling of plasma oscillations with consideration of electron thermal motion
Num. Meth. Prog., 19:2 (2018), 194–206
-
Artificial boundary conditions for numerical modeling of electron oscillations in plasma
Num. Meth. Prog., 18:1 (2017), 65–79
-
Breaking of two-dimensional relativistic electron oscillations under small deviations from axial symmetry
Zh. Vychisl. Mat. Mat. Fiz., 57:11 (2017), 1844–1859
-
A difference scheme for plasma wakefield simulation
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 1, 44–48
-
The effect of ions dynamics on the breaking of plane electron oscillations
Matem. Mod., 27:12 (2015), 3–19
-
Relativistic breaking effect of electron oscillations in a plasma slab
Num. Meth. Prog., 15:3 (2014), 537–548
-
Spatial modeling of breaking effects in nonlinear plasma oscillations
Num. Meth. Prog., 14:3 (2013), 295–305
-
A finite-difference scheme for computing axisymmetric plasma oscillations
Num. Meth. Prog., 13:1 (2012), 1–13
-
Iteration in a subspace for solving matrix games
Zh. Vychisl. Mat. Mat. Fiz., 52:9 (2012), 1601–1613
-
On the method of fictitious unknowns for the numerical solution of matrix games
Num. Meth. Prog., 12:3 (2011), 338–347
-
To the question of large-amplitude electron oscillations in a plasma slab
Zh. Vychisl. Mat. Mat. Fiz., 51:3 (2011), 456–469
-
Numerical modeling of axial solutions to some nonlinear problems
Num. Meth. Prog., 11:3 (2010), 215–227
-
Iterative solution of matrix games by the methods of grid variational inequalities
Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010), 1367–1380
-
A multi-level method for solving large-scale matrix games
Num. Meth. Prog., 10:3 (2009), 327–339
-
Numerical solution of some unstable problem
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 5, 50–53
-
Numerical solution to a stokes interface problem
Zh. Vychisl. Mat. Mat. Fiz., 49:1 (2009), 111–122
-
On modeling of nonrelativistic cylindrical oscillations in plasma
Num. Meth. Prog., 9:1 (2008), 58–65
-
On two methods of approximate projection onto a stable manifold
Num. Meth. Prog., 8:2 (2007), 177–182
-
Numerical modeling of dynamics of 3D nonlinear wakefields in hydrodynamic approach
Num. Meth. Prog., 7:1 (2006), 17–22
-
On projection operators for numerical stabilization
Num. Meth. Prog., 5:1 (2004), 161–169
-
Solution of irregular saddle point problems
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2004, no. 1, 17–20
-
On the preconditioning of saddle problems by means of saddle operators
Zh. Vychisl. Mat. Mat. Fiz., 44:9 (2004), 1523–1533
-
On the solution of saddle problems by methods with model saddle operators on the upper layer
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 8, 19–27
-
Improving the convergence of the Lanczos method in solving algebraic saddle point problems
Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002), 504–513
-
On generalized relaxation method for linear saddle point problems
Matem. Mod., 13:12 (2001), 107–114
-
On solving an algebraic system of Stokes type under block diagonal preconditioning
Zh. Vychisl. Mat. Mat. Fiz., 41:4 (2001), 549–557
-
On the best constant in the inf-sup condition for elongated rectangular domains
Mat. Zametki, 67:3 (2000), 387–396
-
On the Arrow–Hurwicz algorithm with variable iterative parameters
Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 5, 65–72
-
Some results on the convergence of the Arrow–Hurwicz algorithm for Stokes-type algebraic systems
Zh. Vychisl. Mat. Mat. Fiz., 39:3 (1999), 523–533
-
Numerical simulation of the thermal self-focusing process in plazma
Fundam. Prikl. Mat., 2:3 (1996), 789–801
-
On the convergence of the artificial compressibility method
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 2, 13–20
-
On some finite-difference approximations of Stokes problem
Fundam. Prikl. Mat., 1:3 (1995), 573–580
-
Numerical modelling of dynamic wave beam self-focusing in plasmas
Matem. Mod., 7:9 (1995), 65–71
-
On the optimization of algorithms for solving the Stokes problem
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 6, 93–96
-
Methods for the simultaneous solution of the equations of gas dynamics and the kinetics of multiply-charged plasma
Zh. Vychisl. Mat. Mat. Fiz., 30:9 (1990), 1381–1393
-
A system of equations of magnetohydrodynamics type
Dokl. Akad. Nauk SSSR, 278:5 (1984), 1074–1077
© , 2024