RUS  ENG
Full version
PEOPLE

Lerner Moisei Efimovich

Publications in Math-Net.Ru

  1. Разрешимость существенно нелокальной краевой задачи для линейного гиперболического уравнения без младших производных

    Matem. Mod. Kraev. Zadachi, 3 (2005),  159–160
  2. A boundary value problem for mixed-type equations in domains with multiply connected hyperbolicity subdomains

    Sibirsk. Mat. Zh., 44:1 (2003),  160–177
  3. Существенно нелокальные краевые задачи для гиперболических уравнений

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 16 (2002),  36–39
  4. Nonlocal Boundary Value Problems in a Vertical Half-Strip for a Generalized Axisymmetric Helmholtz Equation

    Differ. Uravn., 37:11 (2001),  1562–1564
  5. Boundary value problems for a mixed-type equation in domains with a doubly connected hyperbolicity subdomain

    Differ. Uravn., 36:10 (2000),  1361–1364
  6. Essentially nonlocal boundary value problem for a certain partial differential equation

    Mat. Zametki, 67:3 (2000),  478–480
  7. On Frankl'-type problems for some elliptic equations with degeneration of various types

    Differ. Uravn., 35:8 (1999),  1087–1093
  8. On a problem with two nonlocal boundary conditions for an equation of mixed type

    Sibirsk. Mat. Zh., 40:6 (1999),  1260–1275
  9. Substantively nonlocal boundary value problem for elliptical, parabolic and hyperbolic equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 7 (1999),  178–180
  10. On the formulation of boundary value problems for equations of mixed parabolic-hyperbolic type

    Differ. Uravn., 34:10 (1998),  1430–1432
  11. О задаче Дирихле для обобщенного двуосесимметрического уравнения Гельмгольца в первом квадранте

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 6 (1998),  5–8
  12. The principles of maximum and the methods of statement, boundary value problem for hyperbolic-type and equations of mixed type in bounded simply-connected and multi-connected domain where the boundary is free

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4 (1996),  5–24
  13. On a problem for a model equation of mixed elliptic-parabolic-hyperbolic type in a domain with a doubly connected subdomain of hyperbolicity

    Differ. Uravn., 28:8 (1992),  1456–1459
  14. On the formulation and solvability of a class of boundary value problems for the Lavrent'ev–Bitsadze equation

    Dokl. Akad. Nauk SSSR, 317:3 (1991),  561–565
  15. Qualitative properties of the Riemann function

    Differ. Uravn., 27:12 (1991),  2106–2120
  16. Two new qualitative properties of the Riemann function

    Dokl. Akad. Nauk SSSR, 307:4 (1989),  807–811
  17. Solvability of a boundary value problem for hyperbolic equations in nonclassical domains

    Differ. Uravn., 25:4 (1989),  704–716
  18. Solvability of a boundary value problem for hyperbolic equations in nonclassical domains

    Dokl. Akad. Nauk SSSR, 300:3 (1988),  546–550
  19. Maximum principles for equations of hyperbolic and mixed types in nonclassical domains

    Dokl. Akad. Nauk SSSR, 287:3 (1986),  550–554
  20. Maximum modulus principles for hyperbolic equations and systems of equations in nonclassical domains

    Differ. Uravn., 22:5 (1986),  848–858
  21. Maximum and uniqueness principles for the solutions of boundary value problems of certain equations of mixed type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 2,  71–83
  22. The Tricomi problem with generalized gluing conditions

    Dokl. Akad. Nauk SSSR, 218:1 (1974),  24–27
  23. Maximum principles for second order equations of mixed elliptic-hyperbolic type

    Dokl. Akad. Nauk SSSR, 185:5 (1969),  991–994
  24. The extremal property of the solutions of a certain class of hyperbolic equations

    Dokl. Akad. Nauk SSSR, 184:6 (1969),  1281–1283
  25. A maximum principle for hyperbolic equations and its application to equations of mixed type

    Dokl. Akad. Nauk SSSR, 177:6 (1967),  1269–1272
  26. A singular problem with F. I. Frankl' and F. Tricomi conditions

    Dokl. Akad. Nauk SSSR, 174:1 (1967),  24–26
  27. Uniqueness of a solution of problems with Frankl' and Tricomi conditions for the general Lavrent'ev–Bicadze equation

    Differ. Uravn., 2:9 (1966),  1255–1263


© Steklov Math. Inst. of RAS, 2025