|
|
Publications in Math-Net.Ru
-
Разрешимость существенно нелокальной краевой задачи для линейного гиперболического уравнения без младших производных
Matem. Mod. Kraev. Zadachi, 3 (2005), 159–160
-
A boundary value problem for mixed-type equations in domains with multiply connected hyperbolicity subdomains
Sibirsk. Mat. Zh., 44:1 (2003), 160–177
-
Существенно нелокальные краевые задачи для гиперболических уравнений
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 16 (2002), 36–39
-
Nonlocal Boundary Value Problems in a Vertical Half-Strip for a Generalized Axisymmetric Helmholtz Equation
Differ. Uravn., 37:11 (2001), 1562–1564
-
Boundary value problems for a mixed-type equation in domains with a doubly connected hyperbolicity subdomain
Differ. Uravn., 36:10 (2000), 1361–1364
-
Essentially nonlocal boundary value problem for a certain partial differential equation
Mat. Zametki, 67:3 (2000), 478–480
-
On Frankl'-type problems for some elliptic equations with degeneration of various types
Differ. Uravn., 35:8 (1999), 1087–1093
-
On a problem with two nonlocal boundary conditions for an equation of mixed type
Sibirsk. Mat. Zh., 40:6 (1999), 1260–1275
-
Substantively nonlocal boundary value problem for elliptical, parabolic and hyperbolic equations
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 7 (1999), 178–180
-
On the formulation of boundary value problems for equations of mixed parabolic-hyperbolic type
Differ. Uravn., 34:10 (1998), 1430–1432
-
О задаче Дирихле для обобщенного двуосесимметрического уравнения Гельмгольца в первом квадранте
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 6 (1998), 5–8
-
The principles of maximum and the methods of statement, boundary value problem for hyperbolic-type and equations of mixed type in bounded simply-connected and multi-connected domain where the boundary is free
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4 (1996), 5–24
-
On a problem for a model equation of mixed elliptic-parabolic-hyperbolic type in a domain with a doubly connected subdomain of hyperbolicity
Differ. Uravn., 28:8 (1992), 1456–1459
-
On the formulation and solvability of a class of boundary value problems for the Lavrent'ev–Bitsadze equation
Dokl. Akad. Nauk SSSR, 317:3 (1991), 561–565
-
Qualitative properties of the Riemann function
Differ. Uravn., 27:12 (1991), 2106–2120
-
Two new qualitative properties of the Riemann function
Dokl. Akad. Nauk SSSR, 307:4 (1989), 807–811
-
Solvability of a boundary value problem for hyperbolic equations in nonclassical domains
Differ. Uravn., 25:4 (1989), 704–716
-
Solvability of a boundary value problem for hyperbolic equations
in nonclassical domains
Dokl. Akad. Nauk SSSR, 300:3 (1988), 546–550
-
Maximum principles for equations of hyperbolic and mixed types in
nonclassical domains
Dokl. Akad. Nauk SSSR, 287:3 (1986), 550–554
-
Maximum modulus principles for hyperbolic equations and systems of equations in nonclassical domains
Differ. Uravn., 22:5 (1986), 848–858
-
Maximum and uniqueness principles for the solutions of boundary value problems of certain equations of mixed type
Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 2, 71–83
-
The Tricomi problem with generalized gluing conditions
Dokl. Akad. Nauk SSSR, 218:1 (1974), 24–27
-
Maximum principles for second order equations of mixed elliptic-hyperbolic type
Dokl. Akad. Nauk SSSR, 185:5 (1969), 991–994
-
The extremal property of the solutions of a certain class of hyperbolic equations
Dokl. Akad. Nauk SSSR, 184:6 (1969), 1281–1283
-
A maximum principle for hyperbolic equations and its application to equations of mixed type
Dokl. Akad. Nauk SSSR, 177:6 (1967), 1269–1272
-
A singular problem with F. I. Frankl' and F. Tricomi conditions
Dokl. Akad. Nauk SSSR, 174:1 (1967), 24–26
-
Uniqueness of a solution of problems with Frankl' and Tricomi conditions for the general Lavrent'ev–Bicadze equation
Differ. Uravn., 2:9 (1966), 1255–1263
© , 2025