RUS  ENG
Full version
PEOPLE

Gerdjikov Vladimir Stefanov

Publications in Math-Net.Ru

  1. On soliton solutions and soliton interactions of Kulish–Sklyanin and Hirota–Ohta systems

    TMF, 213:1 (2022),  20–40
  2. Real Hamiltonian forms of affine Toda field theories: Spectral aspects

    TMF, 212:2 (2022),  190–212
  3. The $\text{m}$KdV-type equations related to $A_5^{(1)}$ and $A_5^{(2)}$ Kac–Moody algebras

    TMF, 207:2 (2021),  237–260
  4. On mKdV equations related to Kac-Moody algebras $A_5^{(1)}$ and $A_5^{(2)}$

    Ufimsk. Mat. Zh., 13:2 (2021),  121–140
  5. On asymptotic dynamical regimes of Manakov $N$-soliton trains in adiabatic approximation

    J. Sib. Fed. Univ. Math. Phys., 13:6 (2020),  678–693
  6. Recursion operators and hierarchies of $\text{mKdV}$ equations related to the Kac–Moody algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$

    TMF, 204:3 (2020),  332–354
  7. Kulish–Sklyanin-type models: Integrability and reductions

    TMF, 192:2 (2017),  187–206
  8. The $N$-wave equations with $\mathcal{PT}$ symmetry

    TMF, 188:3 (2016),  397–415
  9. Two-dimensional Toda field equations related to the exceptional algebra $\mathfrak g_2$: Spectral properties of the Lax operators

    TMF, 172:2 (2012),  236–249
  10. Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces

    SIGMA, 7 (2011), 096, 48 pp.
  11. Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces

    TMF, 167:3 (2011),  394–406
  12. Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory

    SIGMA, 6 (2010), 044, 29 pp.
  13. Multicomponent nonlinear schrödinger equations with constant boundary conditions

    TMF, 159:3 (2009),  438–447
  14. Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type

    SIGMA, 4 (2008), 029, 30 pp.
  15. Exact Solutions for Equations of Bose–Fermi Mixtures in One-Dimensional Optical Lattice

    SIGMA, 3 (2007), 071, 14 pp.
  16. $N$-Wave Equations with Orthogonal Algebras: $\mathbb Z_2$ and $\mathbb Z_2\times\mathbb Z_2$ Reductions and Soliton Solutions

    SIGMA, 3 (2007), 039, 19 pp.
  17. $N$-soliton train and generalized complex Toda chain for the Manakov system

    TMF, 151:3 (2007),  391–404
  18. Real Hamiltonian Forms of Affine Toda Models Related to Exceptional Lie Algebras

    SIGMA, 2 (2006), 022, 11 pp.
  19. Multicomponent NLS-Type Equations on Symmetric Spaces and Their Reductions

    TMF, 144:2 (2005),  313–323
  20. Modeling Adiabatic $N$-Soliton Interactions and Perturbations

    TMF, 144:2 (2005),  302–312
  21. The generalized Zakharov–Shabat system and the soliton perturbations

    TMF, 99:2 (1994),  292–299
  22. Complete integrability, gauge equivalence and Lax representation of inhomogeneous nonlinear evolution equations

    TMF, 92:3 (1992),  374–386
  23. On the multicomponent nonlinear Schrödinger equation in the case of non-vanishing boundary conditions

    Zap. Nauchn. Sem. LOMI, 131 (1983),  34–46
  24. Hamiltonian structure of multicomponent nonlinear Schrödinger equations in difference form

    TMF, 52:1 (1982),  89–104
  25. Hamiltonian structures for nonlinear evolution equations associated with polynomial bundles

    Zap. Nauchn. Sem. LOMI, 120 (1982),  55–68
  26. Expansion in “square” eigenfunctions of matrix linear system

    Zap. Nauchn. Sem. LOMI, 101 (1981),  46–63
  27. Expansions in products of solutions of two Dirac systems

    Mat. Zametki, 28:4 (1980),  501–512
  28. Quadratic bundle and nonlinear equations

    TMF, 44:3 (1980),  342–357
  29. Derivation of the Bäcklund transformation in the formalism of the inverse scattering problem

    TMF, 39:1 (1979),  69–74
  30. Low-energy structure of the Feynman $S$-matrix

    TMF, 21:2 (1974),  183–194
  31. Low-energy for photons and infrared divergences

    TMF, 18:1 (1974),  51–55


© Steklov Math. Inst. of RAS, 2025