RUS  ENG
Full version
PEOPLE

Amanzhaev Gurbangeldi Gurbanmammedovich

Publications in Math-Net.Ru

  1. On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$

    Mat. Zametki, 64:5 (1998),  643–647
  2. Approximate tabulation of discrete analogues of functions of finite smoothness in the $L^p$ metric

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 1,  20–23
  3. An effective construction of a discrete analogue of functions with a bounded second derivative

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 2,  18–22
  4. Discrete analogues of infinitely smooth functions

    Diskretn. Anal. Issled. Oper., 3:3 (1996),  3–39
  5. $\epsilon$-entropy and discrete analogues of classes of entire analytic functions

    Diskretn. Anal. Issled. Oper., 3:2 (1996),  3–14
  6. On discrete analogues of fractional smoothness functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 4,  3–7
  7. On discrete analogues of classes of functions defined by a modulus of continuity of the $n$th derivative

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 2,  3–8
  8. On discrete approximations of continuous functions with a bounded second derivative

    Diskretn. Anal. Issled. Oper., 2:2 (1995),  5–15
  9. On discrete analogues of classes of continuous functions of different smoothness

    Dokl. Akad. Nauk, 342:2 (1995),  154–158
  10. On discrete analogues of analytic and other infinitely smooth functions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 5,  18–23
  11. On the closure of a non-zero invariant Yablonsky's class by operation of variables identification

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 3,  76–79
  12. Discrete functions with a given continuity modulus

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 5,  86–89


© Steklov Math. Inst. of RAS, 2024