|
|
Publications in Math-Net.Ru
-
On the complexity of the approximate table representation of discrete analogs of functions of finite smoothness in the metric of $L^p$
Mat. Zametki, 64:5 (1998), 643–647
-
Approximate tabulation of discrete analogues of functions of finite smoothness in the $L^p$ metric
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 1, 20–23
-
An effective construction of a discrete analogue of functions with a bounded second derivative
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 2, 18–22
-
Discrete analogues of infinitely smooth functions
Diskretn. Anal. Issled. Oper., 3:3 (1996), 3–39
-
$\epsilon$-entropy and discrete analogues of classes of entire analytic functions
Diskretn. Anal. Issled. Oper., 3:2 (1996), 3–14
-
On discrete analogues of fractional smoothness functions
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 4, 3–7
-
On discrete analogues of classes of functions defined by a modulus of continuity of the $n$th derivative
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 2, 3–8
-
On discrete approximations of continuous functions with a bounded second derivative
Diskretn. Anal. Issled. Oper., 2:2 (1995), 5–15
-
On discrete analogues of classes of continuous functions of
different smoothness
Dokl. Akad. Nauk, 342:2 (1995), 154–158
-
On discrete analogues of analytic and other infinitely smooth functions
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 5, 18–23
-
On the closure of a non-zero invariant Yablonsky's class by operation of variables identification
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 3, 76–79
-
Discrete functions with a given continuity modulus
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 5, 86–89
© , 2024