RUS  ENG
Full version
PEOPLE

Ivanov Evgeny Alexeevich

Publications in Math-Net.Ru

  1. Higher spins in harmonic superspace

    TMF, 217:3 (2023),  515–532
  2. Hidden Supersymmetry as a Key to Constructing Low-Energy Superfield Effective Actions

    Trudy Mat. Inst. Steklova, 309 (2020),  66–88
  3. Quasicomplex $\mathcal{N}=2$, $d=1$ Supersymmetric Sigma Models

    SIGMA, 9 (2013), 069, 17 pp.
  4. The $\mathcal N{=}4$ super Landau models

    TMF, 174:1 (2013),  46–58
  5. Harmonic Superfields in $\mathcal N=4$ Supersymmetric Quantum Mechanics

    SIGMA, 7 (2011), 015, 14 pp.
  6. Superextensions of Landau models

    Izv. Sarat. Univ. Physics, 10:1 (2010),  24–35
  7. Supersymmetrizing Landau models

    TMF, 154:3 (2008),  409–423
  8. Diverse $N=(4,4)$ Twisted Multiplets in the $N=(2,2)$ Superspace

    TMF, 145:1 (2005),  66–86
  9. Nonanticommutative deformations of $N=(1,1)$ supersymmetric theories

    TMF, 142:2 (2005),  235–251
  10. Conformal Theories–A{d}S Branes Transform, or One More Face of A{d}S/CFT

    TMF, 139:1 (2004),  77–95
  11. Mathematical modelling of catalytic processes with non-stationary condition of the catalyst: two-reactor system

    Sib. Zh. Ind. Mat., 6:1 (2003),  108–117
  12. Mathematical simulation of catalytic processes with a nonstationary state of a catalyst: periodic impacts

    Sib. Zh. Ind. Mat., 5:4 (2002),  128–138
  13. Superbranes and Super Born–Infeld Theories as Nonlinear Realizations

    TMF, 129:2 (2001),  278–297
  14. Mathematical modeling of catalytic reactions with the periodic effects

    Sib. Zh. Ind. Mat., 2:2 (1999),  94–105
  15. Exact maximum likelihood estimator of the structure of a stratified population

    Mat. Zametki, 62:2 (1997),  216–222
  16. Simplified model of fluidized bed for char combustion process

    Matem. Mod., 8:10 (1996),  71–82
  17. The Green–Schwarz superstring as an asymmetric model of a chiral field

    TMF, 81:3 (1989),  420–433
  18. Duality in $d=2$ $\sigma$ models of chiral field with anomaly

    TMF, 71:2 (1987),  193–207
  19. Bäcklund transformations for superextensions of the Liouville equation

    TMF, 66:1 (1986),  90–101
  20. $N=4$ superextension of the Liouville equation with quaternion structure

    TMF, 63:2 (1985),  230–243
  21. Nonlinear realization of the conformal group in two dimensions and the Liouville equation

    TMF, 58:2 (1984),  200–212
  22. Structure of representations of the conformal supergroup in the $OSp(1,4)$ basis

    TMF, 45:1 (1980),  30–45
  23. The supergroup $O\operatorname{Sp}(1,4)$ and classical solutions of the Wess–Zumino model

    TMF, 39:2 (1979),  172–179
  24. On $\Sigma$ models of spontane ously broken symmetries

    TMF, 28:3 (1976),  320–330
  25. Inverse Higgs effect in nonlinear realizations

    TMF, 25:2 (1975),  164–177

  26. Viacheslav Borisovich Priezzhev (06.09.1944 – 31.12.2017)

    TMF, 194:3 (2018),  383–384
  27. In memory of Viktor Isaakovich Ogievetskii

    UFN, 166:9 (1996),  1031–1032
  28. Г. Н. Положий. Уравнения математической физики. Изд-во «Высшая школа», М., 1964

    Differ. Uravn., 1:5 (1965),  701–704


© Steklov Math. Inst. of RAS, 2024