|
|
Publications in Math-Net.Ru
-
Higher spins in harmonic superspace
TMF, 217:3 (2023), 515–532
-
Hidden Supersymmetry as a Key to Constructing Low-Energy Superfield Effective Actions
Trudy Mat. Inst. Steklova, 309 (2020), 66–88
-
Quasicomplex $\mathcal{N}=2$, $d=1$ Supersymmetric Sigma Models
SIGMA, 9 (2013), 069, 17 pp.
-
The $\mathcal N{=}4$ super Landau models
TMF, 174:1 (2013), 46–58
-
Harmonic Superfields in $\mathcal N=4$ Supersymmetric Quantum Mechanics
SIGMA, 7 (2011), 015, 14 pp.
-
Superextensions of Landau models
Izv. Sarat. Univ. Physics, 10:1 (2010), 24–35
-
Supersymmetrizing Landau models
TMF, 154:3 (2008), 409–423
-
Diverse $N=(4,4)$ Twisted Multiplets in the $N=(2,2)$ Superspace
TMF, 145:1 (2005), 66–86
-
Nonanticommutative deformations of $N=(1,1)$ supersymmetric theories
TMF, 142:2 (2005), 235–251
-
Conformal Theories–A{d}S Branes Transform, or One More Face of A{d}S/CFT
TMF, 139:1 (2004), 77–95
-
Mathematical modelling of catalytic processes with non-stationary condition of the catalyst: two-reactor system
Sib. Zh. Ind. Mat., 6:1 (2003), 108–117
-
Mathematical simulation of catalytic processes with a nonstationary state of a catalyst: periodic impacts
Sib. Zh. Ind. Mat., 5:4 (2002), 128–138
-
Superbranes and Super Born–Infeld Theories as Nonlinear Realizations
TMF, 129:2 (2001), 278–297
-
Mathematical modeling of catalytic reactions with the periodic effects
Sib. Zh. Ind. Mat., 2:2 (1999), 94–105
-
Exact maximum likelihood estimator of the structure of a stratified population
Mat. Zametki, 62:2 (1997), 216–222
-
Simplified model of fluidized bed for char combustion process
Matem. Mod., 8:10 (1996), 71–82
-
The Green–Schwarz superstring as an asymmetric model of a chiral field
TMF, 81:3 (1989), 420–433
-
Duality in $d=2$ $\sigma$ models of chiral field with anomaly
TMF, 71:2 (1987), 193–207
-
Bäcklund transformations for superextensions of the Liouville equation
TMF, 66:1 (1986), 90–101
-
$N=4$ superextension of the Liouville equation with quaternion structure
TMF, 63:2 (1985), 230–243
-
Nonlinear realization of the conformal group in two dimensions and the Liouville equation
TMF, 58:2 (1984), 200–212
-
Structure of representations of the conformal supergroup in the $OSp(1,4)$ basis
TMF, 45:1 (1980), 30–45
-
The supergroup $O\operatorname{Sp}(1,4)$ and classical solutions of the Wess–Zumino model
TMF, 39:2 (1979), 172–179
-
On $\Sigma$ models of spontane ously broken symmetries
TMF, 28:3 (1976), 320–330
-
Inverse Higgs effect in nonlinear realizations
TMF, 25:2 (1975), 164–177
-
Viacheslav Borisovich Priezzhev (06.09.1944 – 31.12.2017)
TMF, 194:3 (2018), 383–384
-
In memory of Viktor Isaakovich Ogievetskii
UFN, 166:9 (1996), 1031–1032
-
Г. Н. Положий. Уравнения математической физики. Изд-во «Высшая школа», М., 1964
Differ. Uravn., 1:5 (1965), 701–704
© , 2024