|
|
Publications in Math-Net.Ru
-
Baxter $Q$-operators in Ruijsenaars–Sutherland hyperbolic systems: one- and two-particle cases
Zap. Nauchn. Sem. POMI, 520 (2023), 50–123
-
Matrix elements of vertex operators and fermionic limit of spin Calogero–Sutherland system
J. Phys. A, 53:38 (2020), 385203, 29 pp.
-
Structure Constants of Diagonal Reduction Algebras of $\mathfrak{gl}$ Type
SIGMA, 7 (2011), 064, 34 pp.
-
Diagonal Reduction Algebras of $\mathfrak{gl}$ Type
Funktsional. Anal. i Prilozhen., 44:3 (2010), 27–49
-
Twisted Yangians and Mickelsson algebras. II
Algebra i Analiz, 21:1 (2009), 153–228
-
Generating Series for Nested Bethe Vectors
SIGMA, 4 (2008), 081, 23 pp.
-
Projection method and a universal weight function for the quantum
affine algebra $U_q(\widehat{\mathfrak{sl}}_{N+1})$
TMF, 150:2 (2007), 286–303
-
Yangians and Mickelsson algebras. II
Mosc. Math. J., 6:3 (2006), 477–504
-
Weight Function for the Quantum Affine Algebra $U_{q}(\widehat{\frak{sl}}_3)$
TMF, 145:1 (2005), 3–34
-
Extremal Projector and Dynamical Twist
TMF, 139:1 (2004), 158–176
-
Factorization of the universal $\mathcal R $-matrix for ${U_q(\widehat{sl}_2)} $
TMF, 124:2 (2000), 179–214
-
Zamolodchikov–Faddeev algebras for Yangian doubles at level 1
TMF, 110:1 (1997), 25–45
-
Intertwining operators and Hirota bilinear equations
TMF, 104:1 (1995), 144–157
-
The universal $R$-matrix for quantum untwisted affine Lie algebras
Funktsional. Anal. i Prilozhen., 26:1 (1992), 85–88
-
An algebraic description of some categories of $D_X$-modules
Funktsional. Anal. i Prilozhen., 19:3 (1985), 56–57
-
Irreducible representations of Lorentz groups
Funktsional. Anal. i Prilozhen., 15:2 (1981), 50–60
-
Category of Harish-Chandra modules of the group $SU(n,1)$
Funktsional. Anal. i Prilozhen., 14:2 (1980), 85–86
-
Grigori Iosifovich Olshanski (on his 70th birthday)
Uspekhi Mat. Nauk, 74:3(447) (2019), 193–213
-
Andrei Zelevinski
Mosc. Math. J., 15:2 (2015), 397
-
Mathematical works of D. P. Zhelobenko
Uspekhi Mat. Nauk, 64:1(385) (2009), 178–188
-
Numbers and Sums. Optional Course in Mathematics for 13-15 years old students
Math. Ed., 1999, no. 2-3(9-10), 2–57
© , 2024