RUS  ENG
Full version
PEOPLE

Balashova Galina Sergeevna

Publications in Math-Net.Ru

  1. On non-quasianalytic classes of infinitely differentiable functions

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 164:1 (2022),  43–59
  2. Estimates of the norms of derivatives in the one- and multidimensional cases

    Sib. Èlektron. Mat. Izv., 17 (2020),  865–872
  3. On Fredholm solvability of the Dirichet problem for linear differential equations of infinite order

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 4,  16–20
  4. Movement of two liquids in a layer porous medium

    Taurida Journal of Computer Science Theory and Mathematics, 2018, no. 4,  57–66
  5. On Sobolev spaces of infinite order

    Dokl. Akad. Nauk, 353:2 (1997),  151–152
  6. Differential equations of infinite order with subordinate terms

    Differ. Uravn., 33:8 (1997),  1076–1084
  7. Trace continuation in infinite-order Sobolev space on a multidimensional strip region

    Mat. Zametki, 62:6 (1997),  820–830
  8. Uniform well-posedness of a family of nonlinear boundary value problems of infinite order

    Differ. Uravn., 30:4 (1994),  610–620
  9. On conditions for extending the trace and imbedding for Banach spaces of infinitely differentiable functions

    Mat. Sb., 184:1 (1993),  105–128
  10. Limit behavior of solutions of a sequence of infinite-order differential equations

    Differ. Uravn., 28:4 (1992),  637–651
  11. Extension and embedding theorems for Sobolev spaces of infinite order

    Dokl. Akad. Nauk SSSR, 319:2 (1991),  267–270
  12. Embedding theorems for Banach spaces of infinitely differentiable functions of several variables

    Mat. Zametki, 47:6 (1990),  3–14
  13. On the extension of infinitely differentiable functions

    Izv. Akad. Nauk SSSR Ser. Mat., 51:6 (1987),  1292–1308
  14. Imbedding theorems for Banach spaces of infinitely differentiable functions

    Mat. Sb. (N.S.), 128(170):1(9) (1985),  66–81
  15. Infinite-order equations with subordinate terms, and embedding theorems

    Differ. Uravn., 20:12 (1984),  2076–2087
  16. Imbedding theorems for spaces of infinitely differentiable functions

    Mat. Zametki, 35:4 (1984),  505–516
  17. Imbedding theorems for some spaces of infinitely differentiable functions, and nonlinear equations with subordinate terms

    Dokl. Akad. Nauk SSSR, 263:5 (1982),  1037–1039
  18. On extension theorems in spaces of infinitely differentiable functions

    Mat. Sb. (N.S.), 118(160):3(7) (1982),  371–385
  19. Behavior of the solution of some boundary value problems when the order of the equation increases indefinitely

    Differ. Uravn., 17:2 (1981),  256–269
  20. On some imbedding theorems for spaces of infinitely differentiable functions

    Dokl. Akad. Nauk SSSR, 247:6 (1979),  1301–1304
  21. Some extension theorems in a Sobolev space of infinite order and inhomogeneous boundary value problems

    Dokl. Akad. Nauk SSSR, 244:6 (1979),  1294–1297


© Steklov Math. Inst. of RAS, 2024