|
|
Publications in Math-Net.Ru
-
On multipliers for Fourier series in Sobolev orthogonal polynomials
Mat. Sb., 213:8 (2022), 44–82
-
Generalized Trace Formula for PolynomialsOrthogonal in Continuous-Discrete Sobolev Spaces
Funktsional. Anal. i Prilozhen., 54:4 (2020), 102–105
-
On Potential Functions Associated with Eigenfunctions of the Discrete Sturm–Liouville Operator
Mat. Zametki, 108:6 (2020), 868–881
-
On Fourier Series in Generalized Eigenfunctions of a Discrete Sturm-Liouville Operator
Funktsional. Anal. i Prilozhen., 52:2 (2018), 90–93
-
On linear summability methods of fourier series in polynomials orthogonal in a discrete Sobolev space
Sibirsk. Mat. Zh., 56:2 (2015), 420–435
-
Some extremal problems for algebraic polynomials in loaded spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 2, 53–65
-
An Extremal Problem for Algebraic Polynomials in the Symmetric Discrete Gegenbauer–Sobolev Space
Mat. Zametki, 82:3 (2007), 411–425
-
Symmetric Legendre–Sobolev orthogonal polynomials in the Pontryagin–Sobolev spaces
Mat. Fiz. Anal. Geom., 9:3 (2002), 385–393
-
An Analog of the Trace Formula for Discrete Sturm–Liouville Operators with Asymptotically $N$-Periodic Coefficients
Funktsional. Anal. i Prilozhen., 31:4 (1997), 72–75
-
Estimates of polynomials orthogonal with respect to the Legendre–Sobolev inner product
Mat. Zametki, 62:6 (1997), 871–880
-
On quasipotential functions that are associated with orthogonal
polynomials
Dokl. Akad. Nauk, 342:5 (1995), 589–591
-
A norm estimation for the generalized quasitranslation operator by orthogonal polynomials
Funktsional. Anal. i Prilozhen., 26:1 (1992), 61–63
-
A generalized shift operator in orthogonal matrix polynomials
Dokl. Akad. Nauk SSSR, 318:2 (1991), 282–284
-
A generalized shift operator and convolution structure for
orthogonal polynomials
Dokl. Akad. Nauk SSSR, 298:5 (1988), 1072–1076
-
Fourier series in orthonormal matrix polynomials
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 2, 50–60
-
On orthonormal polynomial bases in weighted Lebesgue spaces
Uspekhi Mat. Nauk, 43:5(263) (1988), 207–208
-
Lattices of invariant subspaces of certain operators
Funktsional. Anal. i Prilozhen., 17:1 (1983), 81–82
-
Weighted estimates for singular integrals and their applications
Itogi Nauki i Tekhn. Ser. Mat. Anal., 21 (1983), 42–129
-
On Fourier–Pollaczek series
Dokl. Akad. Nauk SSSR, 265:4 (1982), 811–815
-
Estimates of weighted norms of some operators generated by multiple trigonometric Fourier series
Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 4, 39–50
-
Weighted polynomial approximation of functions of several variables
Sibirsk. Mat. Zh., 23:6 (1982), 133–146
-
Weight estimates for the majorant of cesaro means for fourier series of $l^r$-valued vector-functions
Funktsional. Anal. i Prilozhen., 15:1 (1981), 80–81
-
Weight estimates for the linear mean majorants of Fourier series of orthogonal polynomials
Uspekhi Mat. Nauk, 35:5(215) (1980), 239–240
-
On weighted polynomial approximation of functions of several variables by linear means
Dokl. Akad. Nauk SSSR, 247:6 (1979), 1320–1324
-
Linear methods of summation of double polynomial expansions
Funktsional. Anal. i Prilozhen., 11:1 (1977), 77–78
-
Some linear convergent processes that are generated by periodic functions of two variables
Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 10, 105–108
-
The convergence and summability of Fourier expansions in orthonormal polynomials that are associated with second order difference operators
Sibirsk. Mat. Zh., 15:4 (1974), 892–908
-
On linear summability methods for Fourier expansions in orthonormal polynomials
Dokl. Akad. Nauk SSSR, 209:1 (1973), 40–42
-
On summation of polynomial Fourier series expansions of functions of the classes $L^p_{\mu(x)}$ ($p\ge1$)
Dokl. Akad. Nauk SSSR, 202:3 (1972), 529–531
-
Approximation properties of certain linear summablility methods
Sibirsk. Mat. Zh., 13:1 (1972), 153–164
-
Estimate of growth of Lebesgue functions of linear methods of summation
Mat. Zametki, 6:3 (1969), 277–286
-
Linear summability methods for expansions of functions in the classes $L^p_\mu$ $(1\leqslant p\leqslant\infty)$ in orthonormal systems of polynomial type
Izv. Akad. Nauk SSSR Ser. Mat., 32:4 (1968), 756–771
-
An example of a unicellular Volterra operator with three involutions
Izv. Vyssh. Uchebn. Zaved. Mat., 1967, no. 1, 83–87
-
Schwarz's lemma for the $J$-nondilating matrix-functions
Izv. Vyssh. Uchebn. Zaved. Mat., 1966, no. 3, 101–108
-
An example of a unicellular Volterra operator with two involutions
Uspekhi Mat. Nauk, 20:6(126) (1965), 143–146
-
Alexandr L'vovich Garkavi (obituary)
Uspekhi Mat. Nauk, 63:3(381) (2008), 147–148
© , 2024