RUS  ENG
Full version
PEOPLE

Frolov Nikolay Nikolaevich

Publications in Math-Net.Ru

  1. On the semigroups of operators Weierstrass and Poisson type

    Dal'nevost. Mat. Zh., 5:2 (2004),  184–194
  2. Theorems for the embedding of space Sobolev type

    Dal'nevost. Mat. Zh., 2:2 (2001),  81–88
  3. Boundary value problem for the Burgers system

    Mat. Zametki, 62:6 (1997),  921–932
  4. Boundary value problem describing the motion of an inhomogeneous fluid

    Sibirsk. Mat. Zh., 37:2 (1996),  433–451
  5. Solvability of a boundary problem of motion of an inhomogeneous fluid

    Mat. Zametki, 53:6 (1993),  130–140
  6. Schrödinger equation in a Hilbert space

    Mat. Zametki, 37:3 (1985),  382–390
  7. On a group of operators induced by the Schrödinger equation

    Uspekhi Mat. Nauk, 38:6(234) (1983),  129–130
  8. Fundamental solutions of infinite-dimensional differential equations with constant coefficients

    Dokl. Akad. Nauk SSSR, 261:5 (1981),  1063–1066
  9. Homeomorphism of Hilbert spaces induced by a differential operator

    Funktsional. Anal. i Prilozhen., 15:4 (1981),  89–90
  10. Embedding theorems for spaces of functions of a countable number of variables and their applications

    Sibirsk. Mat. Zh., 22:4 (1981),  199–217
  11. Selfadjointness of the Schrödinger operator with an infinite number of variables

    Sibirsk. Mat. Zh., 22:1 (1981),  198–204
  12. Self-adjointness of elliptic operators with infinitely many variables

    Funktsional. Anal. i Prilozhen., 14:1 (1980),  85–86
  13. Selfadjointness of the infinite-dimensional Schrödinger operator with cylindrical potential

    Sibirsk. Mat. Zh., 20:2 (1979),  330–336
  14. Essential self-adjointness of an infinite-dimensional operator

    Mat. Zametki, 24:2 (1978),  241–248
  15. The first boundary value problem for an infinite-dimensional linear differential operator of arbitrary order

    Sibirsk. Mat. Zh., 19:4 (1978),  929–941
  16. On the hypoellipticity of infinite-dimensional differential operators

    Mat. Sb. (N.S.), 102(144):2 (1977),  302–313
  17. On the Dirichlet problem for an elliptic operator in a cylindrical domain of Hilbert space

    Mat. Sb. (N.S.), 92(134):3(11) (1973),  430–445
  18. On a coercive inequality for an elliptic operator in infinitely many independent variables

    Mat. Sb. (N.S.), 90(132):3 (1973),  403–414
  19. Embedding theorems for functions of a countable number of variables and their application to the Dirichlet problem

    Dokl. Akad. Nauk SSSR, 203:1 (1972),  39–42


© Steklov Math. Inst. of RAS, 2024