|
|
Publications in Math-Net.Ru
-
Universal relations in asymptotic formulas for orthogonal polynomials
Funktsional. Anal. i Prilozhen., 55:2 (2021), 77–99
-
Second-Order Differential Operators in the Limit Circle Case
SIGMA, 17 (2021), 077, 13 pp.
-
A new representation of Hankel operators and its spectral consequences
Algebra i Analiz, 30:3 (2018), 286–310
-
Passage through a potential barrier and multiple wells
Algebra i Analiz, 29:2 (2017), 242–273
-
Spectral and scattering theory for perturbations of the Carleman operator
Algebra i Analiz, 25:2 (2013), 251–278
-
On the mathematical works of M. Sh. Birman
Algebra i Analiz, 23:1 (2011), 5–60
-
The semiclassical limit of eigenfunctions of the Schrödinger equation and the Bohr–Sommerfeld quantization condition, revisited
Algebra i Analiz, 22:6 (2010), 270–291
-
A Commutator Method for the Diagonalization of Hankel Operators
Funktsional. Anal. i Prilozhen., 44:4 (2010), 65–79
-
The Schrödinger Operator: Perturbation Determinants, the Spectral Shift Function, Trace Identities, and All That
Funktsional. Anal. i Prilozhen., 41:3 (2007), 60–83
-
Scattering on magnetic fields
Algebra i Analiz, 17:5 (2005), 244–272
-
A class of pseudodifferential operators with oscillating symbols
Algebra i Analiz, 11:2 (1999), 218–256
-
New scattering channels in a two-body system with slowly decreasing interaction
Algebra i Analiz, 8:1 (1996), 211–236
-
The scattering matrix for a perturbation of a periodic Schrödinger operator by decreasing potential
Algebra i Analiz, 6:3 (1994), 17–39
-
Spectral properties of the scattering matrix
Algebra i Analiz, 4:6 (1992), 1–27
-
The spectral shift function. The papers of M. G. Krein and their further development
Algebra i Analiz, 4:5 (1992), 1–44
-
Asymptotic of the limit phases in a problem of potential scattering
Funktsional. Anal. i Prilozhen., 24:4 (1990), 94–95
-
Spectral properties of an abstract scattering matrix
Trudy Mat. Inst. Steklov., 188 (1990), 125–149
-
Spectral properties of the scattering matrix
Funktsional. Anal. i Prilozhen., 23:3 (1989), 88–89
-
On the trace-class method in potential scattering theory
Zap. Nauchn. Sem. LOMI, 171 (1989), 12–35
-
Quasiclassical asymptotics of the scattering cross-section for the Schrödinger equation
Izv. Akad. Nauk SSSR Ser. Mat., 52:1 (1988), 139–163
-
Eikonal approximation for the Schrödinger equation
Trudy Mat. Inst. Steklov., 179 (1988), 226–240
-
Quasiclassical asymptotics of the scattering amplitude and cross
section
Dokl. Akad. Nauk SSSR, 292:2 (1987), 334–337
-
Eikonal approximation for fast-decreasing potentials. I
Zap. Nauchn. Sem. LOMI, 163 (1987), 166–185
-
Scattering theory in a pair of spaces
Funktsional. Anal. i Prilozhen., 20:2 (1986), 94–95
-
Phase analysis in the problem of scattering by a radial potential
Zap. Nauchn. Sem. LOMI, 147 (1985), 155–178
-
On resonant scattering by a negative potential
Zap. Nauchn. Sem. LOMI, 138 (1984), 184–193
-
Remarks on the spectral theory for the Schrodinger operator of multiparticle type
Zap. Nauchn. Sem. LOMI, 133 (1984), 277–298
-
The virial theorem and conditions for wave operators to be unitary in scattering by a nonstationary potential
Trudy Mat. Inst. Steklov., 159 (1983), 210–217
-
The evolution operator for time-dependent potentials of zero radius
Trudy Mat. Inst. Steklov., 159 (1983), 167–174
-
Dissipation at low energies for slowly decreasing potentials
Dokl. Akad. Nauk SSSR, 263:3 (1982), 586–590
-
Spectral properties of the Schrödinger operator with a potential having a slow falloff
Funktsional. Anal. i Prilozhen., 16:4 (1982), 47–54
-
Scattering subspaces and asymptotic completeness for the time-dependent Schrödinger equation
Mat. Sb. (N.S.), 118(160):2(6) (1982), 262–279
-
Asymptotic behavior of the limiting phase shifts in the case of scattering by a potential without spherical symmetry
TMF, 51:1 (1982), 44–53
-
Nonstationary scattering theory for elliptic differential operators
Zap. Nauchn. Sem. LOMI, 115 (1982), 285–300
-
Faster-than-power decrease in time of solutions of the Schrödinger equation
Dokl. Akad. Nauk SSSR, 258:4 (1981), 850–853
-
Counterexample to a uniqueness theorem foranalytic operator functions
Zap. Nauchn. Sem. LOMI, 113 (1981), 261–263
-
Asymptotics of the spectrum of the scattering matrix
Zap. Nauchn. Sem. LOMI, 110 (1981), 3–29
-
Asymptotics of the spectrum of the $S$-matrix in potential scattering
Dokl. Akad. Nauk SSSR, 255:5 (1980), 1085–1087
-
Asymptotic completeness for the multidimensional time-dependent Schrödinger equation
Dokl. Akad. Nauk SSSR, 251:4 (1980), 812–816
-
Conditions for the unitarity of wave operators under a scattering by a nonstationary potential
Funktsional. Anal. i Prilozhen., 14:4 (1980), 91–92
-
On the asymptotic behavior of solutions of the time-dependent Schrödinger equation
Mat. Sb. (N.S.), 111(153):2 (1980), 187–208
-
A trace formula in Friedrichs' multichannel model
Trudy Mat. Inst. Steklov., 147 (1980), 194–201
-
Spectral theory and scattering for the d'Alembert operator with vector potential
Trudy Mat. Inst. Steklov., 147 (1980), 5–13
-
Wave operators for the Schrödinger equation
TMF, 45:2 (1980), 224–234
-
“Eigenfunctions” of the nonstationary Schrödinger equation
TMF, 43:2 (1980), 228–239
-
On the violation of unitarity in time-dependent potential scattering
Dokl. Akad. Nauk SSSR, 243:5 (1978), 1150–1153
-
On the singular spectrum in a system of three particles
Mat. Sb. (N.S.), 106(148):4(8) (1978), 622–640
-
Theory of multichannel scattering in two spaces
TMF, 37:1 (1978), 48–57
-
Potential scattering taking account of spatial anisotropy
Dokl. Akad. Nauk SSSR, 235:4 (1977), 749–752
-
Theory of potential scattering, taking into account spatial anisotropy
Zap. Nauchn. Sem. LOMI, 73 (1977), 35–51
-
Traces on surfaces for function classes with dominant mixed derivatives
Zap. Nauchn. Sem. LOMI, 69 (1977), 106–123
-
On the point spectrum in the quantum-mechanical many-body problem
Izv. Akad. Nauk SSSR Ser. Mat., 40:4 (1976), 908–948
-
On the number of discrete levels in the quantum problem of three particles
TMF, 27:1 (1976), 55–66
-
On the finiteness of the discrete spectrum of the three-particle Schrödinger operator
TMF, 25:2 (1975), 185–195
-
On the virtual state of Schrödinger equation
Zap. Nauchn. Sem. LOMI, 51 (1975), 203–216
-
A remark concerning the theory of scattering for a perturbed polyharmonic operator
Mat. Zametki, 15:3 (1974), 445–454
-
On the theory of the discrete spectrum of the three-particle Schrödinger operator
Mat. Sb. (N.S.), 94(136):4(8) (1974), 567–593
-
The discrete spectrum of the three-particle Schrödinger operator
Dokl. Akad. Nauk SSSR, 206:1 (1972), 68–70
-
The point spectrum in the quantum-mechanical problem of many particles
Funktsional. Anal. i Prilozhen., 6:4 (1972), 103–104
-
Trace formulas for charged particles in nonrelativistic quantum mechanics
TMF, 11:1 (1972), 78–92
-
Negative spectrum of the Schrödinger operational equation
Mat. Zametki, 7:6 (1970), 753–763
-
Mikhail Zakharovich Solomyak (obituary)
Uspekhi Mat. Nauk, 72:5(437) (2017), 181–186
-
Mikhail Shlemovich Birman (obituary)
Uspekhi Mat. Nauk, 65:3(393) (2010), 185–190
-
Mikhail Shlemovich Birman (on the Occasion of his 75th Birthday)
Algebra i Analiz, 16:1 (2004), 5–14
-
Mikhail Shlyomovich Birman (on his 70th birthday)
Uspekhi Mat. Nauk, 55:1(331) (2000), 204–207
-
Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon. Berlin etc.: Springer, 1987. 319 p.
Algebra i Analiz, 1:3 (1989), 227–232
-
Mikhail Shlëmovich Birman (on his sixtieth birthday)
Uspekhi Mat. Nauk, 43:3(261) (1988), 201–202
© , 2025