RUS  ENG
Full version
PEOPLE

Yafaev Dmitrii Rauel'evich

Publications in Math-Net.Ru

  1. Universal relations in asymptotic formulas for orthogonal polynomials

    Funktsional. Anal. i Prilozhen., 55:2 (2021),  77–99
  2. Second-Order Differential Operators in the Limit Circle Case

    SIGMA, 17 (2021), 077, 13 pp.
  3. A new representation of Hankel operators and its spectral consequences

    Algebra i Analiz, 30:3 (2018),  286–310
  4. Passage through a potential barrier and multiple wells

    Algebra i Analiz, 29:2 (2017),  242–273
  5. Spectral and scattering theory for perturbations of the Carleman operator

    Algebra i Analiz, 25:2 (2013),  251–278
  6. On the mathematical works of M. Sh. Birman

    Algebra i Analiz, 23:1 (2011),  5–60
  7. The semiclassical limit of eigenfunctions of the Schrödinger equation and the Bohr–Sommerfeld quantization condition, revisited

    Algebra i Analiz, 22:6 (2010),  270–291
  8. A Commutator Method for the Diagonalization of Hankel Operators

    Funktsional. Anal. i Prilozhen., 44:4 (2010),  65–79
  9. The Schrödinger Operator: Perturbation Determinants, the Spectral Shift Function, Trace Identities, and All That

    Funktsional. Anal. i Prilozhen., 41:3 (2007),  60–83
  10. Scattering on magnetic fields

    Algebra i Analiz, 17:5 (2005),  244–272
  11. A class of pseudodifferential operators with oscillating symbols

    Algebra i Analiz, 11:2 (1999),  218–256
  12. New scattering channels in a two-body system with slowly decreasing interaction

    Algebra i Analiz, 8:1 (1996),  211–236
  13. The scattering matrix for a perturbation of a periodic Schrödinger operator by decreasing potential

    Algebra i Analiz, 6:3 (1994),  17–39
  14. Spectral properties of the scattering matrix

    Algebra i Analiz, 4:6 (1992),  1–27
  15. The spectral shift function. The papers of M. G. Krein and their further development

    Algebra i Analiz, 4:5 (1992),  1–44
  16. Asymptotic of the limit phases in a problem of potential scattering

    Funktsional. Anal. i Prilozhen., 24:4 (1990),  94–95
  17. Spectral properties of an abstract scattering matrix

    Trudy Mat. Inst. Steklov., 188 (1990),  125–149
  18. Spectral properties of the scattering matrix

    Funktsional. Anal. i Prilozhen., 23:3 (1989),  88–89
  19. On the trace-class method in potential scattering theory

    Zap. Nauchn. Sem. LOMI, 171 (1989),  12–35
  20. Quasiclassical asymptotics of the scattering cross-section for the Schrödinger equation

    Izv. Akad. Nauk SSSR Ser. Mat., 52:1 (1988),  139–163
  21. Eikonal approximation for the Schrödinger equation

    Trudy Mat. Inst. Steklov., 179 (1988),  226–240
  22. Quasiclassical asymptotics of the scattering amplitude and cross section

    Dokl. Akad. Nauk SSSR, 292:2 (1987),  334–337
  23. Eikonal approximation for fast-decreasing potentials. I

    Zap. Nauchn. Sem. LOMI, 163 (1987),  166–185
  24. Scattering theory in a pair of spaces

    Funktsional. Anal. i Prilozhen., 20:2 (1986),  94–95
  25. Phase analysis in the problem of scattering by a radial potential

    Zap. Nauchn. Sem. LOMI, 147 (1985),  155–178
  26. On resonant scattering by a negative potential

    Zap. Nauchn. Sem. LOMI, 138 (1984),  184–193
  27. Remarks on the spectral theory for the Schrodinger operator of multiparticle type

    Zap. Nauchn. Sem. LOMI, 133 (1984),  277–298
  28. The virial theorem and conditions for wave operators to be unitary in scattering by a nonstationary potential

    Trudy Mat. Inst. Steklov., 159 (1983),  210–217
  29. The evolution operator for time-dependent potentials of zero radius

    Trudy Mat. Inst. Steklov., 159 (1983),  167–174
  30. Dissipation at low energies for slowly decreasing potentials

    Dokl. Akad. Nauk SSSR, 263:3 (1982),  586–590
  31. Spectral properties of the Schrödinger operator with a potential having a slow falloff

    Funktsional. Anal. i Prilozhen., 16:4 (1982),  47–54
  32. Scattering subspaces and asymptotic completeness for the time-dependent Schrödinger equation

    Mat. Sb. (N.S.), 118(160):2(6) (1982),  262–279
  33. Asymptotic behavior of the limiting phase shifts in the case of scattering by a potential without spherical symmetry

    TMF, 51:1 (1982),  44–53
  34. Nonstationary scattering theory for elliptic differential operators

    Zap. Nauchn. Sem. LOMI, 115 (1982),  285–300
  35. Faster-than-power decrease in time of solutions of the Schrödinger equation

    Dokl. Akad. Nauk SSSR, 258:4 (1981),  850–853
  36. Counterexample to a uniqueness theorem foranalytic operator functions

    Zap. Nauchn. Sem. LOMI, 113 (1981),  261–263
  37. Asymptotics of the spectrum of the scattering matrix

    Zap. Nauchn. Sem. LOMI, 110 (1981),  3–29
  38. Asymptotics of the spectrum of the $S$-matrix in potential scattering

    Dokl. Akad. Nauk SSSR, 255:5 (1980),  1085–1087
  39. Asymptotic completeness for the multidimensional time-dependent Schrödinger equation

    Dokl. Akad. Nauk SSSR, 251:4 (1980),  812–816
  40. Conditions for the unitarity of wave operators under a scattering by a nonstationary potential

    Funktsional. Anal. i Prilozhen., 14:4 (1980),  91–92
  41. On the asymptotic behavior of solutions of the time-dependent Schrödinger equation

    Mat. Sb. (N.S.), 111(153):2 (1980),  187–208
  42. A trace formula in Friedrichs' multichannel model

    Trudy Mat. Inst. Steklov., 147 (1980),  194–201
  43. Spectral theory and scattering for the d'Alembert operator with vector potential

    Trudy Mat. Inst. Steklov., 147 (1980),  5–13
  44. Wave operators for the Schrödinger equation

    TMF, 45:2 (1980),  224–234
  45. “Eigenfunctions” of the nonstationary Schrödinger equation

    TMF, 43:2 (1980),  228–239
  46. On the violation of unitarity in time-dependent potential scattering

    Dokl. Akad. Nauk SSSR, 243:5 (1978),  1150–1153
  47. On the singular spectrum in a system of three particles

    Mat. Sb. (N.S.), 106(148):4(8) (1978),  622–640
  48. Theory of multichannel scattering in two spaces

    TMF, 37:1 (1978),  48–57
  49. Potential scattering taking account of spatial anisotropy

    Dokl. Akad. Nauk SSSR, 235:4 (1977),  749–752
  50. Theory of potential scattering, taking into account spatial anisotropy

    Zap. Nauchn. Sem. LOMI, 73 (1977),  35–51
  51. Traces on surfaces for function classes with dominant mixed derivatives

    Zap. Nauchn. Sem. LOMI, 69 (1977),  106–123
  52. On the point spectrum in the quantum-mechanical many-body problem

    Izv. Akad. Nauk SSSR Ser. Mat., 40:4 (1976),  908–948
  53. On the number of discrete levels in the quantum problem of three particles

    TMF, 27:1 (1976),  55–66
  54. On the finiteness of the discrete spectrum of the three-particle Schrödinger operator

    TMF, 25:2 (1975),  185–195
  55. On the virtual state of Schrödinger equation

    Zap. Nauchn. Sem. LOMI, 51 (1975),  203–216
  56. A remark concerning the theory of scattering for a perturbed polyharmonic operator

    Mat. Zametki, 15:3 (1974),  445–454
  57. On the theory of the discrete spectrum of the three-particle Schrödinger operator

    Mat. Sb. (N.S.), 94(136):4(8) (1974),  567–593
  58. The discrete spectrum of the three-particle Schrödinger operator

    Dokl. Akad. Nauk SSSR, 206:1 (1972),  68–70
  59. The point spectrum in the quantum-mechanical problem of many particles

    Funktsional. Anal. i Prilozhen., 6:4 (1972),  103–104
  60. Trace formulas for charged particles in nonrelativistic quantum mechanics

    TMF, 11:1 (1972),  78–92
  61. Negative spectrum of the Schrödinger operational equation

    Mat. Zametki, 7:6 (1970),  753–763

  62. Mikhail Zakharovich Solomyak (obituary)

    Uspekhi Mat. Nauk, 72:5(437) (2017),  181–186
  63. Mikhail Shlemovich Birman (obituary)

    Uspekhi Mat. Nauk, 65:3(393) (2010),  185–190
  64. Mikhail Shlemovich Birman (on the Occasion of his 75th Birthday)

    Algebra i Analiz, 16:1 (2004),  5–14
  65. Mikhail Shlyomovich Birman (on his 70th birthday)

    Uspekhi Mat. Nauk, 55:1(331) (2000),  204–207
  66. Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon. Berlin etc.: Springer, 1987. 319 p.

    Algebra i Analiz, 1:3 (1989),  227–232
  67. Mikhail Shlëmovich Birman (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 43:3(261) (1988),  201–202


© Steklov Math. Inst. of RAS, 2025