RUS  ENG
Full version
PEOPLE

Pham Huu Tiep

Publications in Math-Net.Ru

  1. Automorphism groups of some Mordell–Weil lattices

    Izv. RAN. Ser. Mat., 56:3 (1992),  509–537
  2. Basic spin representations of alternating groups, Gow lattices, and Barnes–Wall lattices

    Mat. Sb., 183:11 (1992),  99–116
  3. Classification of irreducible orthogonal decompositions of simple Lie algebras of type $A_n$

    Algebra i Analiz, 3:3 (1991),  86–109
  4. A reduction theorem for invariant lattices of type $A_n$

    Dokl. Akad. Nauk SSSR, 319:1 (1991),  78–82
  5. Irreducible $J$-decompositions of the Lie algebras $A_{p^n-1}$

    Mat. Zametki, 49:5 (1991),  128–134
  6. Weil representations of finite symplectic groups, and Gow lattices

    Mat. Sb., 182:8 (1991),  1177–1199
  7. Orthogonal decompositions of Lie algebras of types $D_p$ and $C_p$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 3,  13–16
  8. Irreducible orthogonal decompositions of simple Lie algebras of type $A_n$

    Dokl. Akad. Nauk SSSR, 314:4 (1990),  782–786
  9. Characterization of a multiplicative orthogonal decomposition of the Lie algebra $D_4$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 5,  49–53
  10. Lattices of non-radical type in the Lie algebras $B_3$ and $D_4$

    Uspekhi Mat. Nauk, 44:1(265) (1989),  217–218
  11. Irreducible orthogonal decompositions in Lie algebras

    Mat. Sb., 180:10 (1989),  1396–1414
  12. Small lattices in Lie algebras $A_{p-1}$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 4,  70–72
  13. Lattices of root type in the Lie algebras $D_{2^m}$ and $B_{2^m-1}$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 1,  100–102
  14. Invariant sublattices in a certain Cartan subalgebra

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 4,  72–75
  15. Invariant lattices, the Leech lattice and its even unimodular analogues in the Lie algebras $A_{p-1}$

    Mat. Sb. (N.S.), 130(172):4(8) (1986),  435–464
  16. A construction of even unimodular lattices

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 1,  54–57


© Steklov Math. Inst. of RAS, 2024