|
|
Publications in Math-Net.Ru
-
Automorphism groups of some Mordell–Weil lattices
Izv. RAN. Ser. Mat., 56:3 (1992), 509–537
-
Basic spin representations of alternating groups, Gow lattices, and Barnes–Wall lattices
Mat. Sb., 183:11 (1992), 99–116
-
Classification of irreducible orthogonal decompositions of simple Lie algebras of type $A_n$
Algebra i Analiz, 3:3 (1991), 86–109
-
A reduction theorem for invariant lattices of type $A_n$
Dokl. Akad. Nauk SSSR, 319:1 (1991), 78–82
-
Irreducible $J$-decompositions of the Lie algebras $A_{p^n-1}$
Mat. Zametki, 49:5 (1991), 128–134
-
Weil representations of finite symplectic groups, and Gow lattices
Mat. Sb., 182:8 (1991), 1177–1199
-
Orthogonal decompositions of Lie algebras of types $D_p$ and $C_p$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1991, no. 3, 13–16
-
Irreducible orthogonal decompositions of simple Lie algebras of
type $A_n$
Dokl. Akad. Nauk SSSR, 314:4 (1990), 782–786
-
Characterization of a multiplicative orthogonal decomposition of the Lie algebra $D_4$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 5, 49–53
-
Lattices of non-radical type in the Lie algebras $B_3$ and $D_4$
Uspekhi Mat. Nauk, 44:1(265) (1989), 217–218
-
Irreducible orthogonal decompositions in Lie algebras
Mat. Sb., 180:10 (1989), 1396–1414
-
Small lattices in Lie algebras $A_{p-1}$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 4, 70–72
-
Lattices of root type in the Lie algebras $D_{2^m}$ and $B_{2^m-1}$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 1, 100–102
-
Invariant sublattices in a certain Cartan subalgebra
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 4, 72–75
-
Invariant lattices, the Leech lattice and its even unimodular analogues in the Lie algebras $A_{p-1}$
Mat. Sb. (N.S.), 130(172):4(8) (1986), 435–464
-
A construction of even unimodular lattices
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 1, 54–57
© , 2024