RUS  ENG
Full version
PEOPLE

Polyak Boris Teodorovich

Publications in Math-Net.Ru

  1. New criteria for tuning PID controllers

    Avtomat. i Telemekh., 2022, no. 11,  62–82
  2. Observer-aided output feedback synthesis as an optimization problem

    Avtomat. i Telemekh., 2022, no. 3,  7–32
  3. Static controller synthesis for peak-to-peak gain minimization as an optimization problem

    Avtomat. i Telemekh., 2021, no. 9,  86–115
  4. Linear matrix inequalities in control systems with uncertainty

    Avtomat. i Telemekh., 2021, no. 1,  3–54
  5. Use of projective coordinate descent in the Fekete problem

    Zh. Vychisl. Mat. Mat. Fiz., 60:5 (2020),  815–827
  6. Minimum fuel-consumption stabilization of a spacecraft at the Lagrangian points

    Avtomat. i Telemekh., 2019, no. 12,  160–172
  7. Transient response in matrix discrete-time linear systems

    Avtomat. i Telemekh., 2019, no. 9,  112–121
  8. The 100th birthday of Yakov Zalmanovich Tsypkin

    Avtomat. i Telemekh., 2019, no. 9,  6–8
  9. Stability and synchronization of oscillators: new Lyapunov functions

    Avtomat. i Telemekh., 2017, no. 7,  76–85
  10. Principle component analysis: robust versions

    Avtomat. i Telemekh., 2017, no. 3,  130–148
  11. Stability study of a power system with unipolar electromagnetic brake

    Avtomat. i Telemekh., 2016, no. 9,  58–69
  12. Large deviations in linear control systems with nonzero initial conditions

    Avtomat. i Telemekh., 2015, no. 6,  18–41
  13. Sparse feedback in linear control systems

    Avtomat. i Telemekh., 2014, no. 12,  13–27
  14. Scientometrics: who is the patient for this medicine?

    UBS, 44 (2013),  161–170
  15. Regularization-based solution of the PageRank problem for large matrices

    Avtomat. i Telemekh., 2012, no. 11,  144–166
  16. Optimization of linear systems subject to bounded exogenous disturbances: The invariant ellipsoid technique

    Avtomat. i Telemekh., 2011, no. 11,  9–59
  17. Randomized algorithm to determine the eigenvector of a stochastic matrix with application to the PageRank problem

    Avtomat. i Telemekh., 2011, no. 2,  131–141
  18. Research on automatic control theory

    Probl. Upr., 2009, no. 3.1,  13–18
  19. $D$-decomposition technique state-of-the-art

    Avtomat. i Telemekh., 2008, no. 12,  3–40
  20. Suppression of bounded exogenous disturbances: Output feedback

    Avtomat. i Telemekh., 2008, no. 5,  72–90
  21. Multidimensional stability domain of special polynomial families

    Avtomat. i Telemekh., 2007, no. 12,  38–52
  22. Ellipsoid-based parametric estimation in the linear multidimensional systems with uncertain model description

    Avtomat. i Telemekh., 2007, no. 6,  67–80
  23. Rejection of bounded exogenous disturbances by the method of invariant ellipsoids

    Avtomat. i Telemekh., 2007, no. 3,  106–125
  24. Design of the low-order controllers by the $H_\infty$ criterion: A parametric approach

    Avtomat. i Telemekh., 2007, no. 3,  94–105
  25. The $D$-decomposition technique for linear matrix inequalities

    Avtomat. i Telemekh., 2006, no. 11,  159–174
  26. Using predictive control to synchronize chaotic systems

    Avtomat. i Telemekh., 2005, no. 12,  40–50
  27. Stabilizing chaos with predictive control

    Avtomat. i Telemekh., 2005, no. 11,  99–112
  28. Hard problems in linear control theory: possible approaches to solution

    Avtomat. i Telemekh., 2005, no. 5,  7–46
  29. On convergence of external ellipsoidal approximations of the reachability domains of discrete dynamic linear systems

    Avtomat. i Telemekh., 2004, no. 8,  39–61
  30. Extended superstability in control theory

    Avtomat. i Telemekh., 2004, no. 4,  70–80
  31. Newton–Kantorovich method and its global convergence

    Zap. Nauchn. Sem. POMI, 312 (2004),  256–274
  32. Superstable Linear Control Systems. II. Design

    Avtomat. i Telemekh., 2002, no. 11,  56–75
  33. Superstable Linear Control Systems. I. Analysis

    Avtomat. i Telemekh., 2002, no. 8,  37–53
  34. Minimization of Overshoot in Linear Discrete-Time Systems via Low-Order Controllers

    Avtomat. i Telemekh., 2001, no. 4,  98–108
  35. Local programming

    Zh. Vychisl. Mat. Mat. Fiz., 41:9 (2001),  1324–1331
  36. Synthesis of low-order controllers for discrete control systems under nonrandom perturbations

    Avtomat. i Telemekh., 2000, no. 9,  112–119
  37. Synthesis of low-order controllers by the $H^{\infty}$ and the maximum robustness criteria

    Avtomat. i Telemekh., 1999, no. 3,  119–130
  38. Frequency Characteristics under Parametric Uncertainty

    Avtomat. i Telemekh., 1997, no. 4,  155–174
  39. A probabilistic approach to the problem of the stability of interval matrices

    Dokl. Akad. Nauk, 353:4 (1997),  456–458
  40. A Probabilistic Approach to Robust Stability of Time Delay Systems

    Avtomat. i Telemekh., 1996, no. 12,  97–108
  41. Stability and Robust Stability of Uniform Systems

    Avtomat. i Telemekh., 1996, no. 11,  91–104
  42. Algorithms for matrix estimation

    Avtomat. i Telemekh., 1995, no. 11,  122–139
  43. Gain margin for a cascade of uncertain components

    Avtomat. i Telemekh., 1995, no. 9,  93–103
  44. Estimation of the measure of stable polynomials in an interval family

    Avtomat. i Telemekh., 1995, no. 7,  108–115
  45. Robust stability of a class of systems with distributed parameters

    Dokl. Akad. Nauk, 341:4 (1995),  463–465
  46. Necessary conditions for stability of polynomials and their utilization

    Avtomat. i Telemekh., 1994, no. 11,  113–119
  47. Robust aperiodicity

    Dokl. Akad. Nauk, 335:3 (1994),  304–307
  48. Robust stability of a chain of simple links

    Avtomat. i Telemekh., 1993, no. 12,  115–127
  49. The robust Nyquist criterion

    Avtomat. i Telemekh., 1992, no. 7,  25–31
  50. A Family of Asymptotically Optimal Methods for Choosing the Order of a Projective Regression Estimate

    Teor. Veroyatnost. i Primenen., 37:3 (1992),  502–512
  51. Robust $D$-partition

    Avtomat. i Telemekh., 1991, no. 11,  41–53
  52. Ellipsoidal estimation based on a generalized criterion

    Avtomat. i Telemekh., 1991, no. 9,  133–145
  53. Robust stability under complex perturbations of the parameters

    Avtomat. i Telemekh., 1991, no. 8,  45–55
  54. Robust stability of linear discrete systems

    Dokl. Akad. Nauk SSSR, 316:4 (1991),  842–846
  55. Frequency domain criteria for robust stability and aperiodicity of linear systems

    Avtomat. i Telemekh., 1990, no. 9,  45–54
  56. A new method of stochastic approximation type

    Avtomat. i Telemekh., 1990, no. 7,  98–107
  57. Optimal Order of Accuracy of Search Algorithms in Stochastic Optimization

    Probl. Peredachi Inf., 26:2 (1990),  45–53
  58. Asymptotic optimality of the $C_p$-test for the orthogonal series estimation of regression

    Teor. Veroyatnost. i Primenen., 35:2 (1990),  305–317
  59. Passive stochastic approximation

    Avtomat. i Telemekh., 1989, no. 11,  127–134
  60. Optimal projection estimates for a regression function of unknown smoothness

    Dokl. Akad. Nauk SSSR, 304:2 (1989),  297–301
  61. Choice of the regression model order

    Avtomat. i Telemekh., 1988, no. 11,  113–129
  62. Optimal algorithms for stochastic optimization under multiplicative noise

    Dokl. Akad. Nauk SSSR, 284:3 (1985),  564–567
  63. Convergence Rate of Nonparametric Estimates of Maximum-Likelihood Type

    Probl. Peredachi Inf., 21:4 (1985),  17–33
  64. Study of algorithms for estimation of autoregression coefficients

    Avtomat. i Telemekh., 1984, no. 11,  49–57
  65. Criterial algorithms of stochastic optimization

    Avtomat. i Telemekh., 1984, no. 6,  95–104
  66. Signal Processing by the Nonparametric Maximum-Likelihood Method

    Probl. Peredachi Inf., 20:3 (1984),  29–46
  67. Estimators of maximum likelihood type for nonparametric regression

    Dokl. Akad. Nauk SSSR, 273:6 (1983),  1310–1314
  68. Optimal algorithms for criterial optimization under conditions of uncertainty

    Dokl. Akad. Nauk SSSR, 273:2 (1983),  315–318
  69. Robust pseudogradient adaptation algorithms

    Avtomat. i Telemekh., 1980, no. 10,  91–97
  70. Optimal pseudogradient adaptation algorithms

    Avtomat. i Telemekh., 1980, no. 8,  74–84
  71. Optimal pseudogradient stochastic-optimization algorithms

    Dokl. Akad. Nauk SSSR, 250:5 (1980),  1084–1087
  72. Adaptive estimation algorithms: convergence, optimality, stability

    Avtomat. i Telemekh., 1979, no. 3,  71–84
  73. Methods for solving constrained extremum problems in the presence of random noise

    Zh. Vychisl. Mat. Mat. Fiz., 19:1 (1979),  70–78
  74. Convergence and rate of convergence of interative stochastic algorithms. II. The linear case

    Avtomat. i Telemekh., 1977, no. 4,  101–107
  75. Convergence and rate of convergence in iterative stochastic processes. I. The general case

    Avtomat. i Telemekh., 1976, no. 12,  83–94
  76. On the solution of variational inequalities

    Dokl. Akad. Nauk SSSR, 219:5 (1974),  1038–1041
  77. Attainable accuracy of adaptation algorithms

    Dokl. Akad. Nauk SSSR, 218:3 (1974),  532–535
  78. Minimization methods in the presence of constraints

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 12 (1974),  147–197
  79. A method of penalty estimates for conditional extremum problems

    Zh. Vychisl. Mat. Mat. Fiz., 13:1 (1973),  34–46
  80. Convergence of the methods of feasible directions in extremal problems

    Zh. Vychisl. Mat. Mat. Fiz., 11:4 (1971),  855–869
  81. The rate of convergence of the penalty function method

    Zh. Vychisl. Mat. Mat. Fiz., 11:1 (1971),  3–11
  82. Iteration methods that utilize Lagrange multipliers for the solution of extremal problems with equality type constraints

    Zh. Vychisl. Mat. Mat. Fiz., 10:5 (1970),  1098–1106
  83. Semicontinuity of integral functionals and existence theorems on extremal problems

    Mat. Sb. (N.S.), 78(120):1 (1969),  65–84
  84. The conjugate gradient method in extremal problems

    Zh. Vychisl. Mat. Mat. Fiz., 9:4 (1969),  807–821
  85. Minimization of nonsmooth functionals

    Zh. Vychisl. Mat. Mat. Fiz., 9:3 (1969),  509–521
  86. A general method for solving extremal problems

    Dokl. Akad. Nauk SSSR, 174:1 (1967),  33–36
  87. The method of projections for finding the common point of convex sets

    Zh. Vychisl. Mat. Mat. Fiz., 7:6 (1967),  1211–1228
  88. Convergence of minimizing sequences in conditional extremum problems

    Dokl. Akad. Nauk SSSR, 168:5 (1966),  997–1000
  89. Existence theorems and convergence of minimizing sequences for extremal problems with constraints

    Dokl. Akad. Nauk SSSR, 166:2 (1966),  287–290
  90. Constrained minimization methods

    Zh. Vychisl. Mat. Mat. Fiz., 6:5 (1966),  787–823
  91. Gradient methods for solving equations and inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 4:6 (1964),  995–1005
  92. Some methods of speeding up the convergence of iteration methods

    Zh. Vychisl. Mat. Mat. Fiz., 4:5 (1964),  791–803
  93. Gradient methods for minimizing functionals

    Zh. Vychisl. Mat. Mat. Fiz., 3:4 (1963),  643–653

  94. Erratum to: Observer-aided output feedback synthesis as an optimization problem

    Avtomat. i Telemekh., 2022, no. 11,  167–168
  95. 19th World Congress of IFAC

    Avtomat. i Telemekh., 2015, no. 2,  150–156
  96. A. S. Poznyak. Advanced Mathematical Tools for Automatic Control Engineers. Vol. I. Deterministic Systems. Elsevier, Amsterdam, 2008. 775 pp

    Avtomat. i Telemekh., 2009, no. 11,  175–176
  97. First Traditional Russian Youth Summer School “Control, Information, and Optimization”

    Avtomat. i Telemekh., 2009, no. 11,  172–174
  98. B. S. Mordukhovich. Variational Analysis and Generalized Differentiation. I. Basic Theory, II. Applications. Springer, Series Fundamental Principles of Mathematical Sciences, vol. 330, 601 p.; vol. 331, 632 p, 2006

    Avtomat. i Telemekh., 2009, no. 6,  187–189
  99. Selected Works of E. S. Pyatnitskii in 3 Volumes. Moscow: Fizmatlit, 2004, vol. 1; 2005, vol. 2

    Avtomat. i Telemekh., 2005, no. 10,  187–188
  100. Fifteenth International IFAC Congress

    Avtomat. i Telemekh., 2003, no. 1,  186–190
  101. Review on the Monograph “Foundations of Mathematical Modeling in the Programming Environment MATLAB 5 and Scilab” by B. R. Andrievskii and A.L. Fradkov

    Avtomat. i Telemekh., 2001, no. 10,  236–237
  102. 4th Russion-Swedish Control Conference

    Avtomat. i Telemekh., 2001, no. 7,  219–221
  103. Международный симпозиум “Робастность в идентификации и управлении” (Сиена, Италия, 30 июля – 2 августа 1998 г.)

    Avtomat. i Telemekh., 1999, no. 8,  189–190
  104. International symposium on robust control

    Avtomat. i Telemekh., 1993, no. 1,  185–187
  105. Mira Ch. Chaotic dynamics

    Avtomat. i Telemekh., 1989, no. 5,  188–189
  106. Corrections to the paper “Semicontinuity of integral functionals and existence theorems on extremal problems”, Mat. Sb. (N.S.), 78(120) (1969), 65–84

    Mat. Sb. (N.S.), 80(122):4(12) (1969),  616
  107. Igor' Vladimirovich Girsanov (obituary)

    Teor. Veroyatnost. i Primenen., 12:3 (1967),  532–535


© Steklov Math. Inst. of RAS, 2024