RUS  ENG
Full version
PEOPLE

Yashin Aleksandr Danilovich

Publications in Math-Net.Ru

  1. Irreflexive modality on a chain of type $\omega$ and Novikov completeness

    Algebra Logika, 59:6 (2020),  702–718
  2. Irreflexive modality, the Dummett logic, and continual chains

    Sibirsk. Mat. Zh., 59:2 (2018),  468–476
  3. Irreflexive modality as a new logical connective in the Dummett logic

    Sibirsk. Mat. Zh., 55:1 (2014),  228–234
  4. New Constants in the Superintuitionistic Logic $L2$

    Mat. Zametki, 94:6 (2013),  918–932
  5. New constants in two pretabular superintuitionistic logics

    Algebra Logika, 50:2 (2011),  246–267
  6. Finite Axiomatizability of Local Set Theory

    Mat. Zametki, 90:1 (2011),  70–86
  7. An algebraic model of three-dimensional synchronized switch scheme

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 1,  112–122
  8. Branching-time type operators on finite pseudo-Boolean algebras

    Algebra Logika, 47:4 (2008),  509–519
  9. Novikov Complete Logics: Translation Techniques

    Algebra Logika, 43:3 (2004),  364–378
  10. Classification of Novikov Complete Logics with Extra Logical Constants

    Algebra Logika, 42:3 (2003),  366–383
  11. Interpreting Intuitionistic Propositional Logic in Terms of Intuitionistic Protothetics

    Algebra Logika, 41:1 (2002),  104–113
  12. On a new constant in intuitionistic propositional logic

    Fundam. Prikl. Mat., 5:3 (1999),  903–926
  13. On an extension of Gabbay's logic

    Sibirsk. Mat. Zh., 39:1 (1998),  224–235
  14. Modified neighborhood semantics for Kaminski logic

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 2,  8–11
  15. Continuality of a family of logics that are complete in the sense of Novikov with a new monadic connective

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 3,  22–25
  16. On the number of new logical constants in intuitionistic propositional calculus

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1997, no. 1,  7–10
  17. On the completeness of a new intuitionistic connective

    Mat. Zametki, 60:3 (1996),  423–433
  18. A new regular constant in intuitionistic propositional logic

    Sibirsk. Mat. Zh., 37:6 (1996),  1413–1432
  19. The Smetanich logic $T^{\Phi}$ and two definitions of a new intuitionistic connective

    Mat. Zametki, 56:1 (1994),  135–142
  20. Semantic characterization of certain sets of intuitionistic logical connectives

    Mat. Zametki, 45:5 (1989),  103–113
  21. The semantic characterization of modal logical connectives

    Mat. Zametki, 40:4 (1986),  519–526
  22. Semantic characterization of intuitionistic logical connectives

    Mat. Zametki, 38:1 (1985),  157–166
  23. Intuitionistic logical connectives on linear structures

    Mat. Zametki, 35:5 (1984),  663–675
  24. Nishimura's formulas as one-place logical connectives in the elementary theory of Kripke models

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 5,  12–15
  25. Completeness of the intuitionistic predicate calculus with the bar notion

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 4,  67–69
  26. Intuitionistic predicate logic with the connective “tomorrow”

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 4,  19–22

  27. Nikolai Nikolaevich Nepeivoda. To anniversary

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:2 (2019),  295–298


© Steklov Math. Inst. of RAS, 2025