RUS  ENG
Full version
PEOPLE

Berdyshev Vitalii Ivanovich

Publications in Math-Net.Ru

  1. Methods for tracking an object moving in $\mathbb{R}^3$ under conditions of its counteraction

    Dokl. RAN. Math. Inf. Proc. Upr., 517 (2024),  120–124
  2. Observation of an object opposed to the observer in the space $\mathbb{R}^2$

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:3 (2024),  45–52
  3. An observer moving along a cone in $\mathbb{R}^3$ under conditions of opposition from the object

    Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023),  15–20
  4. The motion of an observer over a cone in $\mathbb{R}^3$ under counteraction from an object

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:4 (2023),  49–54
  5. The motion in $\mathbb{R}^3$ of an observer under threat from an object

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:2 (2023),  23–26
  6. Trajectory of an observer tracking object motion around convex obstacles in $\mathbb{R}^2$ and $\mathbb{R}^3$

    Dokl. RAN. Math. Inf. Proc. Upr., 505 (2022),  100–104
  7. An observer and a pair of objects enveloping a set of convex regions

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  64–70
  8. An object bypassing convex sets and an observer's trajectory in two-dimensional space

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  66–73
  9. Trajectory of an observer tracking the motion of an object around a convex set in $\mathbb{R}^3$

    Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021),  95–97
  10. Optimal trajectory of an observer tracking the motion of an object equipped with a striking device

    Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021),  73–77
  11. An Object with a Striking Device and a Hostile Observer in Three-Dimensional Space

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:2 (2021),  49–58
  12. Deviation of an object with a striking device from a visibility area of an observer in $\mathbb{R}^3$

    Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020),  93–96
  13. Problem of safely tracking an object avoiding observation in $\mathbb{R}^2$

    Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020),  86–89
  14. On the International Workshop-Conference on Function Theory Dedicated to the Centenary of the Birth of S.B. Stechkin

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  290–299
  15. An object moving in $\mathbb R^2$ with a high-speed destructive miniobject and an unfriendly solid observer

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:4 (2020),  76–82
  16. A Trajectory Minimizing the Exposure of a Moving Object

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:1 (2020),  27–38
  17. Extremal problems of navigation by geophysical fields

    Eurasian Journal of Mathematical and Computer Applications, 6:2 (2018),  4–18
  18. Characterization of optimal trajectories in $\mathbb {R}^3$

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  40–45
  19. Optimal trajectory in $\mathbb{R}^2$ under observation

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:1 (2018),  40–52
  20. Moving object in $\mathbb{R}^2$ and group of observers

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  87–93
  21. A trajectory in $\mathbb {R}^3$ concealed from observers

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  47–54
  22. A moving object and observers in $\mathbb R^2$ with piecewise smooth shading set

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  95–101
  23. On the problem of tracking a moving object by observers

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  46–55
  24. Linear approximation of vector functions

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:4 (2014),  38–43
  25. Differentiation of the concealment function in the case of a convex occluding set

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  79–84
  26. Concealment characteristics for a moving object

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  110–119
  27. Exposition of the lectures by S. B. Stechkin on approximation theory

    Eurasian Math. J., 2:4 (2011),  5–155
  28. Object and observer: A surveillance problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  7–19
  29. Moving object and observer in a Banach space

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  87–92
  30. Visibility characteristic of a moving point

    Dokl. Akad. Nauk, 424:5 (2009),  588–590
  31. Object visibility for a group of observers with inaccurately given coordinates

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009),  44–51
  32. Object visibility for an observer with inaccurately given coordinates

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:3 (2009),  21–28
  33. Two methods of characterizing the visibility of a moving point

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:3 (2008),  69–81
  34. Determination of the coordinates and orientation of an unmanned airborne vehicle from a geophysical field

    Zh. Vychisl. Mat. Mat. Fiz., 45:6 (2005),  954–965
  35. Navigation by means of the field of altitudes and its fragment

    Trudy Inst. Mat. i Mekh. UrO RAN, 9:1 (2003),  26–37
  36. The best trajectory in the navigation problem over a geophysical field

    Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002),  1144–1150
  37. Trajectory of best navigation

    Trudy Inst. Mat. i Mekh. UrO RAN, 6:2 (2000),  307–312
  38. Differentiation of navigation error with respect to an approximating function and a geophysical field fragment

    Zh. Vychisl. Mat. Mat. Fiz., 40:7 (2000),  1003–1011
  39. Differentiation of Location Error

    Trudy Mat. Inst. Steklova, 219 (1997),  74–79
  40. Generalized polynomial approximation providing the best reference

    Mat. Zametki, 60:5 (1996),  658–669
  41. Polynomial approximation related to navigation over geodesic fields

    Dokl. Akad. Nauk, 325:6 (1992),  1099–1102
  42. The metric projection onto the class $H(\Omega)$

    Dokl. Akad. Nauk SSSR, 266:4 (1982),  777–779
  43. Variation of the norms in the problem of best approximation

    Mat. Zametki, 29:2 (1981),  181–196
  44. Continuity of a multivalued mapping connected with the problem of minimizing a functional

    Izv. Akad. Nauk SSSR Ser. Mat., 44:3 (1980),  483–509
  45. Equivalence of uniform continuity of the metric projection and the $\nu$-projection

    Mat. Zametki, 28:4 (1980),  571–582
  46. The continuity of multimappings connected with minimization of convex functionals

    Dokl. Akad. Nauk SSSR, 243:3 (1978),  561–564
  47. Stability of a minimization problem under perturbation of the set of admissible elements

    Mat. Sb. (N.S.), 103(145):4(8) (1977),  467–479
  48. Непрерывная зависимость элемента, реализующего минимум выпуклого функционала, от множества допустимых элементов

    Mat. Zametki, 19:4 (1976),  501–512
  49. Metric projection onto finite-dimensional subspaces of $\mathrm{C}$ and $\mathrm{L}$

    Mat. Zametki, 18:4 (1975),  473–488
  50. Spaces with a uniformly continuous metric projection

    Mat. Zametki, 17:1 (1975),  3–12
  51. Operator of best approximation on finite-dimensional subspaces

    Mat. Zametki, 16:3 (1974),  501–511
  52. Estimate of the modulus of continuity of the operator grad F

    Mat. Zametki, 16:2 (1974),  349–360
  53. On the modulus of continuity of an operator of best approximation

    Mat. Zametki, 15:5 (1974),  797–808
  54. Best approximations in $L_[0,infty)$ of the differentiation operator

    Mat. Zametki, 9:5 (1971),  477–481
  55. Influence of geometric properties of space on the convergence of Cauchy's method in the best-approximation problem

    Mat. Zametki, 8:3 (1970),  329–338
  56. A relation between Jensen's inequality and a geometrical problem

    Mat. Zametki, 3:3 (1968),  327–338
  57. Jackson's theorem in $L_p$

    Trudy Mat. Inst. Steklov., 88 (1967),  3–16
  58. The approximation in mean of periodic functions by Fourier sums

    Izv. Akad. Nauk SSSR Ser. Mat., 29:3 (1965),  505–526

  59. On S. B. Stechkin's International Workshop-Conference on Function Theory in Memory of Corresponding Member of RAS Y. N. Subbotin and Professor S. A. Telyakovskii

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  277–285
  60. Sergei Aleksandrovich Telyakovskii (A Tribute to His Memory)

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  17–22
  61. Yurii Nikolaevich Subbotin (A Tribute to His Memory)

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022),  9–16
  62. International S.B. Stechkin's Workshop-Conference on Function Theory dedicated to the 85th anniversary of Yu.N. Subbotin and N.I. Chernykh

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  93–108
  63. On the 75th birthday of professor Vitalii Vladimirovich Arestov

    Ural Math. J., 4:2 (2018),  3–5
  64. The 42nd International S.B. Stechkin's Workshop-Conference on function theory

    Ural Math. J., 3:2 (2017),  3–5
  65. A Letter to the Editor

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  316
  66. Ivan Ivanovich Eremin

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  5–12
  67. On the 90th birthday of Sergei Nikanorovich Shimanov

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013),  5–11
  68. To the 75th anniversary of academician of Russian Academy of Sciences Yu. S. Osipov

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:2 (2011),  5–6
  69. Aleksandr Borisovich Kurzhanskii (on the occasion of his 70th birthday)

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009),  5–9
  70. Nikolai Nikolaevich Krasovskii (on the occasion of his 85th birthday)

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:3 (2009),  5–20
  71. Alexandr L'vovich Garkavi (obituary)

    Uspekhi Mat. Nauk, 63:3(381) (2008),  147–148
  72. Yurii Nikolaevich Subbotin (on his 70th birthday)

    Uspekhi Mat. Nauk, 62:2(374) (2007),  187–190
  73. On the collaboration of Siberian and Ural mathematicians

    Sib. Èlektron. Mat. Izv., 4 (2007),  22–27
  74. Yurii Sergeevich Osipov (on the occasion of his 70th birthday)

    Trudy Inst. Mat. i Mekh. UrO RAN, 12:1 (2006),  3–5
  75. Nikolai Nikolaevich Krasovskii (on the occasion of his 80th birthday)

    Trudy Inst. Mat. i Mekh. UrO RAN, 10:2 (2004),  3–19
  76. Anatolii Fedorovich Sidorov (1933–1999)

    Trudy Inst. Mat. i Mekh. UrO RAN, 9:2 (2003),  3–9
  77. S. B. Stechkin and approximation theory

    Trudy Inst. Mat. i Mekh. UrO RAN, 4 (1996),  3–16


© Steklov Math. Inst. of RAS, 2025