RUS  ENG
Full version
PEOPLE

Glagoleva Regina Yakovlevna

Publications in Math-Net.Ru

  1. A sufficient condition for the existence of a “dead zone” for solutions of degenerate semilinear parabolic equations and inequalities

    Mat. Zametki, 60:6 (1996),  824–831
  2. Behavior as $t\to+\infty$ of positive solutions of the first boundary value problem for semilinear parabolic equations

    Mat. Zametki, 50:3 (1991),  12–19
  3. Uniqueness classes and stability of solutions of degenerate quasilinear equations of parabolic type in a problem without initial data

    Differ. Uravn., 21:8 (1985),  1376–1389
  4. Bounds as $t\to+\infty$ for solutions of degenerate linear and nonlinear parabolic equations in unbounded domains

    Mat. Zametki, 37:6 (1985),  820–833
  5. Phragmen-Liouville-type theorems and Liouville theorems for a linear parabolic equation

    Mat. Zametki, 37:1 (1985),  119–124
  6. A problem with mixed boundary conditions for a quasilinear parabolic equation

    Mat. Zametki, 34:3 (1983),  399–406
  7. Nature of the growth of positive solutions of a parabolic equation

    Mat. Zametki, 12:4 (1972),  393–402
  8. Liouville theorems for the solution of a second-order linear parabolic equation with discontinuous coefficients

    Mat. Zametki, 5:5 (1969),  599–606
  9. An apriori estimate for the Holder norm and the Harnack inequality for the solution of a linear parabolic differential equation of second order with discontinuous coefficients

    Mat. Sb. (N.S.), 76(118):2 (1968),  167–185
  10. Some properties of the solutions of a linear second order parabolic equation

    Mat. Sb. (N.S.), 74(116):1 (1967),  47–74
  11. The three cylinder theorem and its applications

    Dokl. Akad. Nauk SSSR, 163:4 (1965),  801–804
  12. The continuous dependence on the initial data of the solution of the first boundary-value problem for a parabolic equation with negative time

    Dokl. Akad. Nauk SSSR, 148:1 (1963),  20–23


© Steklov Math. Inst. of RAS, 2024