RUS  ENG
Full version
PEOPLE

Rossovskii Leonid Efimovich

Publications in Math-Net.Ru

  1. Boundary-value problem for an elliptic functional differential equation with dilation and rotation of arguments

    CMFD, 69:4 (2023),  697–711
  2. Functional-differential equations with dilation and symmetry

    Sibirsk. Mat. Zh., 63:4 (2022),  911–923
  3. Spectral Radius Formula for a Parametric Family of Functional Operators

    Regul. Chaotic Dyn., 26:4 (2021),  392–401
  4. The spectral radius of a certain parametric family of functional operators

    Uspekhi Mat. Nauk, 75:5(455) (2020),  195–196
  5. Image filtering with the use of anisotropic diffusion

    Zh. Vychisl. Mat. Mat. Fiz., 57:3 (2017),  396–403
  6. Coercive solvability of nonlocal boundary-value problems for parabolic equations

    CMFD, 62 (2016),  140–151
  7. Continuous dependence of solutions to functional differential equations on the scaling parameter

    Eurasian Math. J., 7:2 (2016),  68–74
  8. The First Boundary-Value Problem for Strongly Elliptic Functional-Differential Equations with Orthotropic Contractions

    Mat. Zametki, 97:5 (2015),  733–748
  9. Elliptic functional differential equations with contractions and extensions of independent variables of the unknown function

    CMFD, 54 (2014),  3–138
  10. The coercivity of functional differential equations

    CMFD, 45 (2012),  122–131
  11. On the Spectral Stability of Functional-Differential Equations

    Mat. Zametki, 90:6 (2011),  885–901
  12. Solvability of elliptic functional-differential equations with compressions of the arguments in weighted spaces

    Tr. Semim. im. I. G. Petrovskogo, 26 (2007),  39–57
  13. Strongly elliptic difference-differential operators in semibounded cylinder

    Fundam. Prikl. Mat., 7:1 (2001),  289–293
  14. Solvability and regularity of solutions of some classes of elliptic functional-differential equations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 66 (1999),  114–192
  15. Coerciveness Problem for a Class of Functional Differential Equations

    Funktsional. Anal. i Prilozhen., 30:1 (1996),  81–83
  16. Coerciveness of functional-differential equations

    Mat. Zametki, 59:1 (1996),  103–113
  17. A boundary value problem for a functional-differential equation with a linearly transformed argument

    Differ. Uravn., 31:8 (1995),  1348–1352


© Steklov Math. Inst. of RAS, 2024