RUS  ENG
Full version
PEOPLE

Veits Boris Efimovich

Publications in Math-Net.Ru

  1. Simple proofs of Olevskii type theorems

    Mat. Zametki, 59:3 (1996),  343–350
  2. Uniform convergence of biorthogonal basis expansions and semireflexivity of locally convex spaces

    Mat. Zametki, 40:5 (1986),  658–661
  3. Lacunary systems in Banach spaces of class $C^2$

    Mat. Zametki, 40:4 (1986),  511–518
  4. A certain class of vector bases and bases of subspaces

    Sibirsk. Mat. Zh., 14:5 (1973),  933–950
  5. Smoothness criteria for a Banach space to be convertible into a Hilbert space

    Mat. Zametki, 9:4 (1971),  385–390
  6. Orthogonal systems of elements in smooth Banach spaces

    Dokl. Akad. Nauk SSSR, 192:1 (1970),  9–12
  7. The existence of lacunary systems in Banach spaces

    Dokl. Akad. Nauk SSSR, 190:1 (1970),  15–18
  8. Lacunary systems

    Dokl. Akad. Nauk SSSR, 179:4 (1968),  762–765
  9. Characteristic properties of unconditional bases and theorems of stability

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 4,  24–36
  10. Bessel and Hilbert systems in Banach spaces and questions of stability

    Izv. Vyssh. Uchebn. Zaved. Mat., 1965, no. 2,  7–23
  11. Some properties of stability of bases

    Dokl. Akad. Nauk SSSR, 158:1 (1964),  13–16
  12. Some characteristic properties of unconditional bases

    Dokl. Akad. Nauk SSSR, 155:3 (1964),  509–512
  13. On some properties of unconditional convergence bases

    Uspekhi Mat. Nauk, 17:6(108) (1962),  135–142
  14. Some applications of the general theory of bi-orthogonal systems to the study of symmetrizable operators

    Uspekhi Mat. Nauk, 17:6(108) (1962),  127–134

  15. Поправки к статье “Ортогональные системы элементов в гладких пространствах Банаха” (ДАН, т. 192, № 1, 1970 г.)

    Dokl. Akad. Nauk SSSR, 196:6 (1971),  742


© Steklov Math. Inst. of RAS, 2024