RUS  ENG
Full version
PEOPLE

Vladimirskii Yu N

Publications in Math-Net.Ru

  1. Equimeasurable sets and cylindrical measures

    Teor. Veroyatnost. i Primenen., 40:4 (1995),  731–740
  2. On conditions for a cylindrical measure to be countably additive in a dual locally convex space

    Mat. Zametki, 56:3 (1994),  13–19
  3. Quasi-WCG-spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 1,  48–50
  4. The tight components of cylindrical measures

    Teor. Veroyatnost. i Primenen., 31:4 (1986),  815–817
  5. Compactness of $\gamma$-summing operators

    Mat. Zametki, 37:5 (1985),  743–750
  6. A probabilistic characterization of $p$-quasinuclear operators $(0<p<1)$

    Mat. Zametki, 35:6 (1984),  889–896
  7. On a probabilistic characterization of some classes of locally convex spaces

    Teor. Veroyatnost. i Primenen., 28:3 (1983),  521–532
  8. Cylindrical measures and $p$-summing operators

    Teor. Veroyatnost. i Primenen., 26:1 (1981),  59–72
  9. On the conditions when the cylindrical measure on cojugate Banach space may be extended to Radon measure

    Teor. Veroyatnost. i Primenen., 24:3 (1979),  574–579
  10. On some topological properties of countably additive cylindrical measures

    Teor. Veroyatnost. i Primenen., 24:1 (1979),  211–215
  11. Remarks on Calkin operators

    Sibirsk. Mat. Zh., 17:5 (1976),  963–966
  12. Remarks on compact approximation in Banach spaces

    Sibirsk. Mat. Zh., 15:1 (1974),  200–204
  13. Compact perturbations of $\Phi_-$ -operators in locally convex spaces

    Sibirsk. Mat. Zh., 14:4 (1973),  738–759
  14. Bounded perturbations of $\Phi$-operators in locally convex spaces

    Dokl. Akad. Nauk SSSR, 196:2 (1971),  263–265
  15. The theory of semi-Fredholm operators in topological linear spaces

    Uspekhi Mat. Nauk, 26:5(161) (1971),  217–218
  16. $\Phi$_-operators in locally convex spaces

    Dokl. Akad. Nauk SSSR, 184:3 (1969),  514–517
  17. $\Phi_{+}$-operators in locally convex spaces

    Uspekhi Mat. Nauk, 23:3(141) (1968),  175–176
  18. Strictly cosingular operators

    Dokl. Akad. Nauk SSSR, 174:6 (1967),  1251–1252


© Steklov Math. Inst. of RAS, 2024