RUS  ENG
Full version
PEOPLE

Stepanov Sergei Aleksandrovich

Publications in Math-Net.Ru

  1. Nonlinear $q$-ary codes with large code distance

    Probl. Peredachi Inf., 53:3 (2017),  44–53
  2. On the discrete logarithm problem

    Diskr. Mat., 26:1 (2014),  133–142
  3. On the structure of Artin $L$-functions

    Izv. RAN. Ser. Mat., 78:1 (2014),  167–180
  4. Nonlinear codes from modified Butson–Hadamard matrices

    Diskr. Mat., 18:4 (2006),  137–147
  5. A New Class of Nonlinear $Q$-ary Codes

    Probl. Peredachi Inf., 42:3 (2006),  45–58
  6. A New Class of Nonlinear Senary Codes

    Probl. Peredachi Inf., 42:2 (2006),  53–62
  7. A New Class of Quaternary Codes

    Probl. Peredachi Inf., 42:1 (2006),  3–12
  8. Method of orbit sums in the theory of modular vector invariants

    Mat. Sb., 197:11 (2006),  79–114
  9. A new class of nonlinear quinary codes

    Diskr. Mat., 17:4 (2005),  7–17
  10. Codes on fibre products of Artin–Schreier curves

    Diskr. Mat., 13:2 (2001),  3–13
  11. Vector invariants of symmetric groups in the case of a field of prime characteristic

    Diskr. Mat., 12:4 (2000),  25–38
  12. Polynomial invariants of finite groups over fields of prime characteristic

    Diskr. Mat., 11:3 (1999),  3–14
  13. Stratified products of hyperelliptic curves, and geometric Goppa codes

    Diskr. Mat., 9:3 (1997),  36–42
  14. Codes on fiber products of hyperelliptic curves

    Diskr. Mat., 9:1 (1997),  83–94
  15. On vector invariants of the symmetric group

    Diskr. Mat., 8:2 (1996),  48–62
  16. On lower bounds for character sums over finite fields

    Trudy Mat. Inst. Steklov., 207 (1994),  297–298
  17. Lower bounds on character sums over finite fields

    Diskr. Mat., 3:2 (1991),  77–86
  18. An estimate for the incomplete sum of multiplicative characters of polynomials

    Diskr. Mat., 2:3 (1990),  115–119
  19. On the construction of a primitive normal basis in a finite field

    Mat. Sb., 180:8 (1989),  1067–1072
  20. The number of irreducible polynomials of a given form over a finite field

    Mat. Zametki, 41:3 (1987),  289–295
  21. Estimation of rational trigonometric sums on “algebraic varieties”

    Dokl. Akad. Nauk SSSR, 286:2 (1986),  298–301
  22. Rational trigonometric sums on “algebraic varieties”

    Mat. Zametki, 39:2 (1986),  161–174
  23. On the number of irreducible polynomials in $F_q[x]$ of special form

    Uspekhi Mat. Nauk, 40:4(244) (1985),  199–200
  24. Estimation of rational trigonometric sums along a curve

    Dokl. Akad. Nauk SSSR, 277:5 (1984),  1077–1082
  25. Diophantine equations

    Trudy Mat. Inst. Steklov., 168 (1984),  31–45
  26. Rational trigonometric sums along a curve

    Zap. Nauchn. Sem. LOMI, 134 (1984),  232–251
  27. Rational trigonometric sums and Artin $L$-functions

    Dokl. Akad. Nauk SSSR, 265:1 (1982),  39–42
  28. Diophantine equations over function fields

    Mat. Zametki, 32:6 (1982),  753–764
  29. Proof of the davenport-hasse relations

    Mat. Zametki, 27:1 (1980),  3–6
  30. Diophantine equations over function fields

    Mat. Sb. (N.S.), 112(154):1(5) (1980),  86–93
  31. An elementary method in algebraic number theory

    Mat. Zametki, 24:3 (1978),  425–431
  32. Equations over finite fields

    Mat. Zametki, 21:2 (1977),  271–279
  33. Lower bounds for incomplete sums of the characters of polynomials

    Trudy Mat. Inst. Steklov., 143 (1977),  175–177
  34. On the theory of Jacobsthal sums

    Trudy Mat. Inst. Steklov., 142 (1976),  208–214
  35. Constructive method in the theory of equations over finite fields

    Trudy Mat. Inst. Steklov., 132 (1973),  237–246
  36. Congruences in two unknowns

    Izv. Akad. Nauk SSSR Ser. Mat., 36:4 (1972),  683–711
  37. An estimation of Kloosterman sums

    Izv. Akad. Nauk SSSR Ser. Mat., 35:2 (1971),  308–323
  38. The estimation of rational trigonometric sums with prime denominator

    Trudy Mat. Inst. Steklov., 112 (1971),  346–371
  39. Estimation of Weyl sums with prime denominator

    Izv. Akad. Nauk SSSR Ser. Mat., 34:5 (1970),  1015–1037
  40. Congruences modulo a power of a prime

    Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 1,  80–90
  41. Congruences modula a power of a prime number

    Dokl. Akad. Nauk SSSR, 186:1 (1969),  43–46
  42. On the number of points of a hyperelliptic curve over a finite prime field

    Izv. Akad. Nauk SSSR Ser. Mat., 33:5 (1969),  1171–1181
  43. The approximation of an algebraic number by algebraic numbers of a special form

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1967, no. 6,  78–86

  44. Валентин Федорович Колчин (1934–2016)

    Diskr. Mat., 28:4 (2016),  3–5
  45. Letter to the editors

    Diskr. Mat., 13:4 (2001),  157
  46. Valentin Evgen'evich Voskresenskii (on his 70th birthday)

    Uspekhi Mat. Nauk, 52:6(318) (1997),  201–202
  47. All-Union School-Seminar on number theory

    Uspekhi Mat. Nauk, 33:2(200) (1978),  234–236
  48. Remark on my article “Estimation of Weyl sums with prime denominator”

    Izv. Akad. Nauk SSSR Ser. Mat., 35:4 (1971),  965–966


© Steklov Math. Inst. of RAS, 2025