RUS  ENG
Full version
PEOPLE

Orlovsky Dmitry Germanovich

Publications in Math-Net.Ru

  1. On approximation of coefficient inverse problems for differential equations in functional spaces

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 133 (2017),  3–80
  2. Parameter determination in a differential equation of fractional order with Riemann–Liouville fractional derivative in a Hilbert space

    J. Sib. Fed. Univ. Math. Phys., 8:1 (2015),  55–63
  3. On an Inverse Problem for the Maxwell–Boltzmann Equation

    J. Sib. Fed. Univ. Math. Phys., 2:3 (2009),  327–335
  4. On the Fredholm solvability of inverse problems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 6,  66–69
  5. Determination of a parameter of a parabolic equation in Hilbert's structure

    Mat. Zametki, 55:3 (1994),  109–117
  6. Fredholm solvability of inverse boundary value problems for second-order abstract differential equations

    Differ. Uravn., 28:4 (1992),  687–697
  7. An inverse problem for an equation of hyperbolic type in a Hilbert space

    Differ. Uravn., 27:10 (1991),  1771–1778
  8. Weak and strong solutions of inverse problems for differential equations in a Banach space

    Differ. Uravn., 27:5 (1991),  867–874
  9. Determination of the evolution of a parameter in an abstract parabolic equation

    Differ. Uravn., 27:1 (1991),  114–120
  10. Meaning of evolution of a parameter in an abstract quasilinear parabolic equation

    Mat. Zametki, 50:2 (1991),  111–119
  11. On a problem of determining the parameter of an evolution equation

    Differ. Uravn., 26:9 (1990),  1614–1621
  12. A semigroup approach to a problem of determining the inhomogeneous term in evolution equations

    Dokl. Akad. Nauk SSSR, 305:5 (1989),  1045–1049
  13. An inverse problem for a second-order differential equation in a Banach space

    Differ. Uravn., 25:6 (1989),  1000–1009
  14. Some inverse problems of kinetic gas theory for states that are close to equilibrium states

    Dokl. Akad. Nauk SSSR, 298:6 (1988),  1334–1338
  15. Determination of the parameter of an evolution equation and inverse problems of mathematical physics. III

    Differ. Uravn., 23:8 (1987),  1343–1353
  16. Some inverse problems for the linearized Boltzmann equation

    Zh. Vychisl. Mat. Mat. Fiz., 27:11 (1987),  1690–1700
  17. Determination of the parameter of an evolution equation and inverse problems of mathematical physics. II

    Differ. Uravn., 21:4 (1985),  694–701
  18. Determination of the parameter of an evolution equation and inverse problems of mathematical physics. I

    Differ. Uravn., 21:1 (1985),  119–129
  19. Inverse problems for semilinear evolution equations

    Dokl. Akad. Nauk SSSR, 277:4 (1984),  799–803
  20. The inverse Cauchy problem for hyperbolic systems

    Differ. Uravn., 20:10 (1984),  1760–1768
  21. Inverse Cauchy problem for linear hyperbolic systems

    Differ. Uravn., 20:1 (1984),  98–104
  22. On the problem of determining the right-hand side of a hyperbolic system

    Differ. Uravn., 19:8 (1983),  1437–1445


© Steklov Math. Inst. of RAS, 2024