RUS  ENG
Full version
PEOPLE

Chuprunov Alexej Nikolaevich

Publications in Math-Net.Ru

  1. Invariance principle for numbers of particles in cells of a general allocation scheme

    Diskr. Mat., 35:3 (2023),  81–99
  2. On the number of particles from a marked set of cells for an analogue of a general allocation scheme

    Diskr. Mat., 35:2 (2023),  143–151
  3. On a number of particles in a marked set of cells in a general allocation scheme

    Diskr. Mat., 34:1 (2022),  141–152
  4. On maximal quantity of particles of one color in analogs of multicolor urn schemes

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 7,  94–100
  5. Asymptotics of conditional probabilities of succesful allocation of random number of particles into cells

    Diskr. Mat., 28:3 (2016),  14–25
  6. On the probability of the event: in $n$ generalized allocation schemes the volume of each cell does not exceed $r$

    Ufimsk. Mat. Zh., 8:2 (2016),  14–21
  7. The probability of successful allocation of particles in cells (the general case)

    Fundam. Prikl. Mat., 18:5 (2013),  119–128
  8. An analogue of the generalised allocation scheme: limit theorems for the maximum cell load

    Diskr. Mat., 24:3 (2012),  122–129
  9. On the generalised allocation scheme with a random number of particles

    Diskr. Mat., 24:2 (2012),  149–153
  10. An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a given number of particles

    Diskr. Mat., 24:1 (2012),  140–158
  11. Strong laws of large numbers for a number of error-free blocks under error-corrected coding

    Inform. Primen., 5:3 (2011),  80–85
  12. On probability of correction of a random number of errors in an error-correcting coding

    Diskr. Mat., 22:2 (2010),  41–50
  13. Laws of iterated logarithm for numbers of nonerror blocks under error corrected coding

    Inform. Primen., 4:3 (2010),  42–46
  14. The probability of correcting errors by an antinoise coding method when the number of errors belongs to a random set

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 8,  81–88
  15. Almost sure versions of limit theorems for random sums of multiindex random variables

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 2,  86–96
  16. On probabilistic aspects of error correction codes when the number of errors is a random set

    Inform. Primen., 3:3 (2009),  52–59
  17. An almost sure limit theorem for random sums of independent random variables in the domain of attraction of a semistable law

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 11,  85–88
  18. The probability of a successful allocation of ball groups by boxes

    Lobachevskii J. Math., 25 (2007),  3–7
  19. Limit theorems for nonhomogeneous Ornstein–Uhlenbeck process

    Zap. Nauchn. Sem. POMI, 339 (2006),  111–134
  20. Convergence for step line processes under summation of random indicators and models of market pricing

    Lobachevskii J. Math., 12 (2003),  11–39
  21. Almost sure limit theorems for the Pearson statistic

    Teor. Veroyatnost. i Primenen., 48:1 (2003),  162–169
  22. The invariance principle for independent observations of a Banach-valued random process

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 4,  83–84
  23. On convergence in law of maxima of independent identically distributed random variables with random coefficients

    Teor. Veroyatnost. i Primenen., 44:1 (1999),  138–143
  24. On the convergence of random polygonal lines with normalizations of the Student type

    Teor. Veroyatnost. i Primenen., 41:4 (1996),  914–919
  25. Limit theorems for weighted and normalized sums of random elements in Banach spaces. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 3,  74–81
  26. Предельные теоремы для взвешенных и нормированных сумм случайных элементов в банаховых пространствах. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 2,  72–78
  27. On Sequence Spaces Related to Independent Random Elements

    Funktsional. Anal. i Prilozhen., 28:2 (1994),  87–90
  28. On the convergence of almost all sums of independent Banach-valued random elements with respect to distribution

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 11,  83–86
  29. On the rate of convergence of weighted sums of independent Banach-space-valued random elements to stable and semistable laws. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 7,  74–82
  30. Convergence in distribution of almost all sums of independent random elements to a stable law

    Mat. Zametki, 55:4 (1994),  138–140
  31. On refinement of Banach-valued limit theorems for stable laws

    Teor. Veroyatnost. i Primenen., 39:4 (1994),  851–856
  32. Central limit theorem for randomly weighted summands in Banach spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 8,  76–82
  33. Spaces of Banach-space-valued random elements that are isomorphic to spaces of sequences, and their applications. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 1,  64–73
  34. Laws of large numbers in Banach spaces of type $(F,F_1 )$

    Teor. Veroyatnost. i Primenen., 38:4 (1993),  906–909
  35. Spaces of Banach-space-valued random elements that are isomorphic to spaces of sequences, and their applications. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 12,  59–66
  36. Limit theorems for stable laws in Banach spaces that possess geometric properties

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 9,  73–80
  37. Convergence of series of independent random elements in Orlicz spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 4,  78–87
  38. Dense families of distributions of sums of independent random elements in Banach spaces of type $(F,F_1)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2,  72–82
  39. Spaces connected with sequences of independent random elements

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 9,  68–74
  40. Generalization of spaces of stable and Rademacher types $p$

    Teor. Veroyatnost. i Primenen., 36:3 (1991),  521–534
  41. Spaces of sequences in a Banach space that are connected with a sequence of independent random variables

    Teor. Veroyatnost. i Primenen., 36:1 (1991),  186–191
  42. Locally convex spaces in which each probability is dense

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 3,  86–88
  43. Measurability of linear functionals

    Mat. Zametki, 33:6 (1983),  943–948
  44. Sufficient topologies and norms

    Teor. Veroyatnost. i Primenen., 28:4 (1983),  700–714
  45. Nonmeasurable subsets

    Issled. Prikl. Mat., 6 (1979),  113–116


© Steklov Math. Inst. of RAS, 2024