|
|
Publications in Math-Net.Ru
-
Invariance principle for numbers of particles in cells of a general allocation scheme
Diskr. Mat., 35:3 (2023), 81–99
-
On the number of particles from a marked set of cells for an analogue of a general allocation scheme
Diskr. Mat., 35:2 (2023), 143–151
-
On a number of particles in a marked set of cells in a general allocation scheme
Diskr. Mat., 34:1 (2022), 141–152
-
On maximal quantity of particles of one color in analogs of multicolor urn schemes
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 7, 94–100
-
Asymptotics of conditional probabilities of succesful allocation of random number of particles into cells
Diskr. Mat., 28:3 (2016), 14–25
-
On the probability of the event: in $n$ generalized allocation schemes the volume of each cell does not exceed $r$
Ufimsk. Mat. Zh., 8:2 (2016), 14–21
-
The probability of successful allocation of particles in cells (the general case)
Fundam. Prikl. Mat., 18:5 (2013), 119–128
-
An analogue of the generalised allocation scheme: limit theorems for the maximum cell load
Diskr. Mat., 24:3 (2012), 122–129
-
On the generalised allocation scheme with a random number of particles
Diskr. Mat., 24:2 (2012), 149–153
-
An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a given number of particles
Diskr. Mat., 24:1 (2012), 140–158
-
Strong laws of large numbers for a number of error-free blocks under error-corrected coding
Inform. Primen., 5:3 (2011), 80–85
-
On probability of correction of a random number of errors in an error-correcting coding
Diskr. Mat., 22:2 (2010), 41–50
-
Laws of iterated logarithm for numbers of nonerror blocks under error corrected coding
Inform. Primen., 4:3 (2010), 42–46
-
The probability of correcting errors by an antinoise coding method when the number of errors belongs to a random set
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 8, 81–88
-
Almost sure versions of limit theorems for random sums of multiindex random variables
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 2, 86–96
-
On probabilistic aspects of error correction codes when the number of errors is a random set
Inform. Primen., 3:3 (2009), 52–59
-
An almost sure limit theorem for random sums of independent random variables in the domain of attraction of a semistable law
Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 11, 85–88
-
The probability of a successful allocation of ball groups by boxes
Lobachevskii J. Math., 25 (2007), 3–7
-
Limit theorems for nonhomogeneous Ornstein–Uhlenbeck process
Zap. Nauchn. Sem. POMI, 339 (2006), 111–134
-
Convergence for step line processes under summation of random indicators and models of market pricing
Lobachevskii J. Math., 12 (2003), 11–39
-
Almost sure limit theorems for the Pearson statistic
Teor. Veroyatnost. i Primenen., 48:1 (2003), 162–169
-
The invariance principle for independent observations of a Banach-valued random process
Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 4, 83–84
-
On convergence in law of maxima of independent identically distributed random variables with random coefficients
Teor. Veroyatnost. i Primenen., 44:1 (1999), 138–143
-
On the convergence of random polygonal lines with normalizations of the Student type
Teor. Veroyatnost. i Primenen., 41:4 (1996), 914–919
-
Limit theorems for weighted and normalized sums of random elements in Banach spaces. II
Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 3, 74–81
-
Предельные теоремы для взвешенных и нормированных сумм случайных элементов в банаховых пространствах. I
Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 2, 72–78
-
On Sequence Spaces Related to Independent Random Elements
Funktsional. Anal. i Prilozhen., 28:2 (1994), 87–90
-
On the convergence of almost all sums of independent Banach-valued random elements with respect to distribution
Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 11, 83–86
-
On the rate of convergence of weighted sums of independent Banach-space-valued random elements to stable and semistable laws. I
Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 7, 74–82
-
Convergence in distribution of almost all sums of independent random elements to a stable law
Mat. Zametki, 55:4 (1994), 138–140
-
On refinement of Banach-valued limit theorems for stable laws
Teor. Veroyatnost. i Primenen., 39:4 (1994), 851–856
-
Central limit theorem for randomly weighted summands in Banach spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 8, 76–82
-
Spaces of Banach-space-valued random elements that are isomorphic to spaces of sequences, and their applications. II
Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 1, 64–73
-
Laws of large numbers in Banach spaces of type $(F,F_1 )$
Teor. Veroyatnost. i Primenen., 38:4 (1993), 906–909
-
Spaces of Banach-space-valued random elements that are isomorphic to spaces of sequences, and their applications. I
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 12, 59–66
-
Limit theorems for stable laws in Banach spaces that possess geometric properties
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 9, 73–80
-
Convergence of series of independent random elements in Orlicz spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 4, 78–87
-
Dense families of distributions of sums of independent random elements in Banach spaces of type $(F,F_1)$
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2, 72–82
-
Spaces connected with sequences of independent random elements
Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 9, 68–74
-
Generalization of spaces of stable and Rademacher types $p$
Teor. Veroyatnost. i Primenen., 36:3 (1991), 521–534
-
Spaces of sequences in a Banach space that are connected with a sequence of independent random variables
Teor. Veroyatnost. i Primenen., 36:1 (1991), 186–191
-
Locally convex spaces in which each probability is dense
Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 3, 86–88
-
Measurability of linear functionals
Mat. Zametki, 33:6 (1983), 943–948
-
Sufficient topologies and norms
Teor. Veroyatnost. i Primenen., 28:4 (1983), 700–714
-
Nonmeasurable subsets
Issled. Prikl. Mat., 6 (1979), 113–116
© , 2024