|
|
Publications in Math-Net.Ru
-
Octonions and binocular mobilevision
Fundam. Prikl. Mat., 7:3 (2001), 909–924
-
Characteristics of pairs of operators, Lie hybrids, Poisson brackets and nonlinear geometric algebra
Fundam. Prikl. Mat., 6:1 (2000), 265–273
-
Dynamical inverse problem of representation theory and noncommutative geometry
Fundam. Prikl. Mat., 4:1 (1998), 359–365
-
Topics in isotopic pairs and their representations. II. A general supercase
TMF, 111:1 (1997), 149–158
-
Belavkin–Kolokoltsov watch-dog effects in interactively controlled stochastic dynamical videosystems
TMF, 106:2 (1996), 333–352
-
Isotopic pairs and their representations
TMF, 105:1 (1995), 18–28
-
Complex projective geometry and quantum projective field theory
TMF, 101:3 (1994), 331–348
-
Quantum projective field theory: Quantum-field analogs of the Euler–Arnol'd equations in projective $G$ multiplets
TMF, 98:2 (1994), 220–240
-
Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory
TMF, 97:3 (1993), 336–347
-
Folding of Verma modules over the Lie algebra $\mathfrak{sl}(2, \mathbb C)$ and hidden
$\mathfrak{sl}(3, \mathbb C)$-symmetries in a projective quantum field theory
Uspekhi Mat. Nauk, 47:3(285) (1992), 153
-
On the determination of the radius of univalence of a regular function from its Taylor coefficients
Mat. Sb., 183:1 (1992), 45–64
-
QPFT operator algebras and commutative exterior differential calculus
TMF, 93:1 (1992), 32–38
-
Quantum projective field theory: Quantum-field analogs of the Euler formulas
TMF, 92:1 (1992), 172–176
-
The algebra $\mathrm{Vert}(\mathbb C\mathrm{vir},c)$ of vertex operators for the Virasoro algebra
Algebra i Analiz, 3:3 (1991), 197–205
-
A certain module over the binary-Lie central extension $\mathsf{jl_2}(\mathbb C)$ of the double $\mathsf{sl_2}(\mathbb C)+\mathsf{sl_2}(\mathbb C)$
Uspekhi Mat. Nauk, 46:6(282) (1991), 223–224
-
Fubini-Veneziano fields in quantum projective field theory
Uspekhi Mat. Nauk, 46:5(281) (1991), 161–162
-
Quantum conformal field theory as an infinite-dimensional non-commutative geometry
Uspekhi Mat. Nauk, 46:4(280) (1991), 115–138
-
Classification of vertex operators in two-dimensional
$\operatorname{sl} (2,\mathbb C)$-invariant quantum field theory
TMF, 86:3 (1991), 338–343
-
A model of Verma modules over the Virasoro algebra
Algebra i Analiz, 2:2 (1990), 209–226
-
Radius of univalence of a regular function
Funktsional. Anal. i Prilozhen., 24:1 (1990), 90–91
-
Non-Euclidean geometry of mirrors and prequantization on the homogeneous Kähler manifold $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$
Uspekhi Mat. Nauk, 43:2(260) (1988), 159–160
-
Kähler geometry of the infinite-dimensional homogeneous space $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$
Funktsional. Anal. i Prilozhen., 21:4 (1987), 35–46
-
Octonion and superoctonion symmetries in exceptional gauge groups
TMF, 73:1 (1987), 74–78
-
Kähler geometry of the infinite-dimensional homogeneous manifold $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$
Funktsional. Anal. i Prilozhen., 20:4 (1986), 79–80
© , 2024