| 
	
        
	
                        
	 | 
	
	
	
	
 
	
  
	
	
        
	  
			Publications in Math-Net.Ru
			
				- 
				Octonions and binocular mobilevision
Fundam. Prikl. Mat., 7:3 (2001),  909–924	 
					- 
				Characteristics of pairs of operators, Lie hybrids, Poisson brackets and nonlinear geometric algebra
Fundam. Prikl. Mat., 6:1 (2000),  265–273	 
					- 
				Dynamical inverse problem of representation theory and noncommutative geometry
Fundam. Prikl. Mat., 4:1 (1998),  359–365	 
					- 
				Topics in isotopic pairs and their representations. II. A general supercase
TMF, 111:1 (1997),  149–158	 
					- 
				Belavkin–Kolokoltsov watch-dog effects in interactively controlled stochastic dynamical videosystems
TMF, 106:2 (1996),  333–352	 
					- 
				Isotopic pairs and their representations
TMF, 105:1 (1995),  18–28	 
					- 
				Complex projective geometry and quantum projective field theory
TMF, 101:3 (1994),  331–348	 
					- 
				Quantum projective field theory: Quantum-field analogs of the Euler–Arnol'd equations in projective $G$ multiplets
TMF, 98:2 (1994),  220–240	 
					- 
				Three algebraic structures of quantum projective ($\mathrm{sl}(2,\mathbb C)$-invariant) field theory
TMF, 97:3 (1993),  336–347	 
					- 
				Folding of Verma modules over the Lie algebra $\mathfrak{sl}(2, \mathbb C)$ and hidden 
$\mathfrak{sl}(3, \mathbb C)$-symmetries in a projective quantum field theory
Uspekhi Mat. Nauk, 47:3(285) (1992),  153	 
					- 
				On the determination of the radius of univalence of a regular function from its Taylor coefficients
Mat. Sb., 183:1 (1992),  45–64	 
					- 
				QPFT operator algebras and commutative exterior differential calculus
TMF, 93:1 (1992),  32–38	 
					- 
				Quantum projective field theory: Quantum-field analogs of the Euler formulas
TMF, 92:1 (1992),  172–176	 
					- 
				The algebra $\mathrm{Vert}(\mathbb C\mathrm{vir},c)$ of vertex operators for the Virasoro algebra
Algebra i Analiz, 3:3 (1991),  197–205	 
					- 
				A certain module over the binary-Lie central extension $\mathsf{jl_2}(\mathbb C)$ of the double $\mathsf{sl_2}(\mathbb C)+\mathsf{sl_2}(\mathbb C)$
Uspekhi Mat. Nauk, 46:6(282) (1991),  223–224	 
					- 
				Fubini-Veneziano fields in quantum projective field theory
Uspekhi Mat. Nauk, 46:5(281) (1991),  161–162	 
					- 
				Quantum conformal field theory as an infinite-dimensional non-commutative geometry
Uspekhi Mat. Nauk, 46:4(280) (1991),  115–138	 
					- 
				Classification of vertex operators in two-dimensional 
$\operatorname{sl} (2,\mathbb C)$-invariant quantum field theory
TMF, 86:3 (1991),  338–343	 
					- 
				A model of Verma modules over the Virasoro algebra
Algebra i Analiz, 2:2 (1990),  209–226	 
					- 
				Radius of univalence of a regular function
Funktsional. Anal. i Prilozhen., 24:1 (1990),  90–91	 
					- 
				Non-Euclidean geometry of mirrors and prequantization on the homogeneous Kähler manifold $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$
Uspekhi Mat. Nauk, 43:2(260) (1988),  159–160	 
					- 
				Kähler geometry of the infinite-dimensional homogeneous space $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$
Funktsional. Anal. i Prilozhen., 21:4 (1987),  35–46	 
					- 
				Octonion and superoctonion symmetries in exceptional gauge groups
TMF, 73:1 (1987),  74–78	 
					- 
				Kähler geometry of the infinite-dimensional homogeneous manifold $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$
Funktsional. Anal. i Prilozhen., 20:4 (1986),  79–80	 
					
			 
				
	
	
	
	© , 2025